
CPUville Z80 Single-Board Computer Kit Instruction Manual

“The Simple CP/M Computer”

By Donn Stewart

© 2023 by Donn Stewart

If you find any errors in this manual, please let me know. Thanks.

1

Table of Contents
Introduction..4
Building Tips..5
Building the Computer...9
Testing and Using CPUville Z80 Single-board Computer...21

Using the terminal emulation program Realterm..22
Monitor commands..23

dump...23
load...24
jump..26
run...26
?..27
help...27
bload...27
bdump...31
diskrd..34
diskwr...35
cpm...35

Testing the memory...35
Connecting a disk drive...36
Testing the disk drive...38

Installing CP/M version 2.2...41
CP/M system update..41
About CP/M..41
CP/M Source Code..42
Preparing the disk for CP/M..42
Putting the CP/M System Files onto the disk..44
Installing the CP/M loader..45

Running CP/M...47
Built-in commands..47
Transient commands..50
Using the PCGET and PCPUT file transfer utilities...59

Schematics and Explanations...66
Z80 CPU..66
ROM and RAM memory...68
Serial Interface..70
Serial Port Connector..72
PATA Interface...73
Memory Configuration Logic...74
Connectors and miscellaneous circuit elements..77

Parts organizer..79
Parts list..81
Selected Program Listings...82

chr_echo..82
ROM monitor..82

2

Customized BIOS..101
Format..111
Putsys...112
CP/M loader...114

Table of Tested Disk Drives...117

3

Introduction

The CPUville Z80 Single-Board Computer Kit is a complete small computer in hobbyist kit form. Once
assembled, you can use the keyboard and display of a PC, or a dumb terminal, through the Z80
computer’s serial interface, to communicate with the Z80 computer using text input and output. With a
compatible IDE disk drive, you can install the CP/M1 operating system. The computer comes with a
monitor program in ROM that has commands to read and write RAM memory, load files over the serial
interface into RAM and execute programs, read and write disk sectors, and to execute CP/M if it is
installed.

This manual assumes the reader is familiar with assembly language, binary and hexadecimal notation.
You should be familiar with the concepts of basic binary logic (AND, OR, NOT etc.) and simple logic
circuits. I assume the reader has a basic understanding of electricity and circuit elements such as
resistors, LEDs, and capacitors.

The disk interface in this computer is an IDE interface (also known as parallel ATA, or PATA), that will
accommodate an IDE-compatible drive, including compact flash and SD drives with the appropriate
adapter (see the Table of Tested Drives on page 115). Only the lower 8 bits of each disk data word are
transmitted to the Z80 system, so drives that operate in 16-bit mode will have only half the disk space
available. This is a trade-off to keep the price of the kit low, because extra hardware would be needed
to capture all 16-bits, and convert it to 8-bits for the Z80 data bus. However, since the PATA interface
has been replaced by the serial ATA (SATA) interface in commercial computers, IDE drives are now
obsolete, and IDE drives with sizes of hundreds of megabytes or even gigabytes are very inexpensive.
8-bit programs are very small, so literally thousands of Z80 programs would fit into a disk space of 100
megabytes. If you have an IDE drive of a few hundred megabytes or more, you can run CP/M and store
all the 8-bit data you could reasonably want.

Power for a disk drive that requires only low-current +5V, such as a solid state drive, can be provided
by the two-pin connector on the computer board, or by pin 20 on the IDE connector, as described in
detail in “Building the Computer” below. Power for a drive that requires +12V, or a drive that draws a
lot of current from the +5V supply, will need to be provided by an appropriate power supply. Usually, a
hobbyist will have an old computer system power supply that can supply both the regulated +5V for the
computer, and +12V for the disk drive. These power supplies can also be obtained cheaply. If two
separate power supplies are used, they need to share a common ground.

The 64K memory has two configurations. Configuration 0 has 2K of ROM from location 0x0000 to
0x07FF, and 62K of RAM from 0x0800 to 0xFFFF. Configuration 1 is all-RAM, that is, it has 64K of
RAM from location 0x0000 to 0xFFFF. The configurations are selected by software OUT instructions
to port 0 or port 1, respectively. This system is necessary because the Z80 processor executes code
starting at 0x0000 when taken out of reset, so we need ROM there when the computer starts. But,
CP/M needs RAM in locations starting at 0x0000, and from this comes the need for the two memory
configurations.

1 CP/M is a registered trademark, currently owned by Lineo, Inc.

4

Building Tips2

Thanks for buying a CPUville kit. Here is what you need to build it:

1. Soldering iron. I strongly recommend a pencil-tip type of iron, from 15 to 30 watts.
2. Solder. Use rosin core solder. Lead-free or lead-containing solders are fine. I have been using

Radio Shack Standard Rosin Core Solder, 60/40, 0.032 in diameter. Use eye protection when
soldering, and be careful, you can get nasty burns even from a 15-watt iron.

3. Tools. You will need needle nose pliers to bend leads. You will need wire cutters to cut leads
after soldering, and possibly wire strippers if you want to solder power wires directly to the
board. I find a small pen knife useful in prying chips or connectors from their sockets. A
voltmeter is useful for testing continuity and voltage polarity. A logic probe is useful for
checking voltages on IC pins while the computer is running, to track down signal connection
problems.

4. De-soldering tool. Hopefully you will not need to remove any parts from the board, but if you
do, some kind of desoldering tool is needed. I use a “Soldapullt”, a kind of spring-loaded
syringe that aspirates melted solder quickly. Despite using this, I destroy about half the parts I
try to take off, so it is good to be careful when placing the parts in the first place, so you don't
have to remove them later.

Soldering tips:

1. Before you plug in the iron, clean the tip with something mildly abrasive, like steel wool or a
3M Scotchbrite pad (plain ones, not the ones with soap in them).

2. Let the iron get hot, then tin the tip with lots of solder (let it drip off some). With a fresh coat of
shiny solder the heat transfer is best.

3. Wipe the tinned tip on a wet sponge briefly to get off excess solder. Wipe it from time to time
while soldering, so you don't get a big solder drop on it.

4. All CPUville kits have through-hole parts (no surface-mounted devices). This makes it easy for
even inexperienced hobbyists to be successful.

5. The basic technique of soldering a through-hole lead is as follows:
1. Apply the soldering iron tip so that it heats both the lead and the pad on the circuit board
2. Wait a few seconds (I count to 4), then apply the solder.
3. Apply only the minimum amount of solder to make a small cones around the leads, like this:

2 These are generic building tips that apply to all CPUville kits. The photos may not be from the same kit you have
purchased.

5

This is only about 1/8th inch of the 0.032 inch diameter solder that I use. If you keep
applying the solder, it will drip down the lead to the other side of the board, and you can get
shorts. Plus, it looks bad.

4. Remove the solder first, wait a few seconds, then remove the soldering iron. Pull the iron tip
away at a low angle so as not to make a solder blob.

5. There are some pads with connections to large copper zones (ground planes) like these:

These require extra heat to make good connections, because the zones wick away the
soldering iron heat. You will usually need to let a 15-watt iron rest on the pin and pad for
more time before applying the solder (count to 10). You also can use a more powerful (30
watt) soldering iron.

6. The three main errors one might make are these:
1. Cold joint. This happens when the iron heats only the pad, leaving the lead cold. The

solder sticks to the pad, but there is no electrical connection with the lead. If this
happens, you can usually just re-heat the joint with the soldering iron in the proper way
(both the lead and the pad), and the electrical connection will be made.

2. Solder blob. This happens if you heat the lead and not the pad, or if you pull the iron up
the lead, dragging solder with it. If this happens, you can probably pick up the blob with
the hot soldering iron tip, and either wipe it off on your sponge and start again, or carry
it down to the joint and make a proper connection.

3. Solder bridge. This happens if you use too much solder, and if flows over to another
pad. This is bad, because it causes a short circuit, and can damage parts.

If this happens, you have to remove the solder with a desoldering tool, and re-do the joints.

Other tips:

1. Be careful not to damage the traces on the board. They are very thin copper films, just under
a thin plastic layer of solder mask (the green stuff). If you plop the board down on a hard

6

surface that has hard debris on it (like ICs, screws etc.) it is easy to cut a trace. Such damage
can be fixed, if you can find it, but try to avoid it in the first place.

2. When soldering multi-pin components, like the ICs or IC sockets, it is important to hold the
parts against the board when soldering so they aren't “up in the air” when the solder
hardens. The connections might work OK, but it looks terrible. If you make a lot of
connections on a part while it is up in the air it is very difficult to get it to sit back down,
because you cannot heat all the connections at the same time. To prevent this, I like to solder
the lowest profile parts first, like resistors, because when the board is upside down they will
be pressed against the top of the board by the surface of the table I am working on. Then, I
solder the taller parts, like the LEDs, sockets, and capacitors. Sometimes, I need to put
something beneath the component to support it while the board is upside down to be
soldered, like a rolled-up piece of paper or the handle of a tool. Another technique is to put a
tiny drop of solder on the tip of the iron, press the part against the board with one hand, and
apply the drop of solder to one of the leads. When the solder hardens, it holds the chip in
place. Solder the other leads, then come back and re-solder the one you used to hold it. It is
good to re-solder it because the original solder drop will not have had any rosin in it. The
rosin in the cold solder helps the electrical connection to be clean.

3. The components with long bendable leads (capacitors, resistors, and LEDs) can be inserted,
and then the leads bent to hold them in place:

4. You might have to bend the leads on components, ICs or IC sockets to get them to fit into
the holes on the boards. For an IC, place the part on the table and bend the leads all at once,
like this:

7

Bending the leads one-by-one or all together with the needle nose pliers doesn't work as
well for some reason.
Also, some components have leads bent outward to fit in a certain printed circuit board
footprint, but will fit a smaller footprint if you bend the leads in with a needle-nosed pliers.
Here is a tantalum capacitor, one with wide leads, the other with narrow leads, from bending
the wide leads in:

5. After you have soldered a row or two check the joints with a magnifying glass. These kits
have small leads and pads, and it can be hard to see if you got the solder on correctly by
naked eye. You can miss tiny hair-like solder bridges unless you inspect carefully. It is good
to brush off the bottom of the board from time to time with something like a dry paintbrush
or toothbrush, to get off any small solder drops that are sitting there.

6. The connectors, like the 40-pin IDE drive connector and the system connector in this kit
have pins that are a little more massive than the IC socket or component pins. This means
that more time, or perhaps more wattage, will be required to heat these pins with the
soldering iron, to ensure good electrical connections.

8

Building the Computer

Print out the Parts Organizer (pages 79 and 80) and put the parts on the organizer to make sure you
have them all, and to get familiar with them.

9

10

Once you have checked the parts you can start to solder them onto the circuit board.

The easiest way to solder the components is to start with the shortest (parts that lie closest to the board)
and proceed to the tallest. The order is resistors, reset switch, resistor network, oscillator, IC sockets,
LEDs, capacitors, 40-pin connectors, and serial interface connector. Some components need to be
oriented properly, as described below.

1. The resistors can be soldered first. They do not have to be oriented.

2. The reset switch is next.

3. The resistor network can be soldered next. Please note that the marked pin goes to the left, as
shown here:

11

4. The oscillator is next. It has to be placed with the sharp corner at the lower left:

5. The IC sockets are next. They do not need to be oriented.

6. The LEDs are next. The cathode, which is side with the shorter lead, and the flat side of the
plastic base, is oriented toward the right. There is a small “K” on the circuit board symbol by
the cathode hole:

12

7. The tantalum capacitors for the serial interface are next. They need to be oriented as with the
positive lead (the stripe) to the left, toward the “+” symbols on the circuit board, as shown:

13

Also, depending on the type of capacitors shipped with your kit, you may have to bend the leads
in to get the capacitors to fit the footprints on the circuit board. Here are two tantalum
capacitors, one with wide leads, the other with narrow leads after bending the wide leads with a
needle-nosed pliers:

8. The 40-pin system connector on the right of the board, and 2-pin plain headers that serve as
jumpers JP1 and JP2 are next. No orientation is necessary, but they have fairly large leads and
may require more time and/or soldering iron wattage to solder.

9. The kit comes with two different disk drive connectors, a shrouded header and a right-angle
header. The 40-pin shrouded header is a typical IDE connector. It is best for connecting a disk
drive with a cable. If you plug an IDE flash module into the shrouded header, it will be standing
up, like this:

14

The right-angle header can be used if you plan to place the computer board in a stack, with a
module lying down in the space provided for it:

15

Most modules will fit lying down, but not all:

A third method of connecting a disk is to use the shrouded header together with a 40-pin female
right-angle header (not included in the kit) as an adapter:

16

This is less than ideal, because there are two pin-plug interfaces between the module and board,
but it is the most flexible, allowing for cable connections to the shrouded header, and also for
modules lying down using the right-angle female header as an adapter. Also, some thick
modules that will not fit lying down using the plain male right-angle header soldered to the
circuit board will fit if using the right-angle female header.

10. Think about how you will supply power to your disk drive, and if the cable or drive plug you
will use is “keyed”. The IDE specification allows for pin 20 to act as a key for orienting the
plug in the connector. Here is an example of a keyed plug:

If you are using a keyed plug, and you want to leave the key blocker in its hole, then you should
remove pin 20 from the shrouded header connector before you solder it in. You can push the pin
through the plastic from the bottom with a flat hard object, like a screwdriver tip, and then pull
it out the rest of the way with pliers:

17

You can also cut off pin 20 from the right-angle header with small metal snips. Alternatively,
you can leave pin 20 in the connector, and remove the small key plug from the female socket on
your adapter, drive or cable with a needle or pointed knife. The computer circuit board supplies
+5V to pin 20, and most drives will either use the +5V to power them, or ignore the +5V.
Interestingly, some adapters and flash modules that have the pin 20 hole blocked with a plug
can provide power to the adapter through pin 20 if you remove the plug.

If you have a drive with a non-keyed plug, or one that can use the +5V supplied through pin 20,
you should leave the pin in the connector. If you remove pin 20 without cutting it, you can put
the pin back in the shrouded connector later if you want to, by pushing it back through the
plastic with the pliers and screwdriver, like you did when you removed it.

The shrouded 40-pin connector is oriented with pin 1 in the left front corner, as shown by the
“Pin 1” label on the circuit board, and the small arrow etched into the plastic shroud:

The cut-out in the shroud should be toward the front of the board. If you install the right-angle

18

header instead, it of course should point toward the back of the board. There is no keying with
the right-angle header, so take a little extra care when plugging in a module to make sure you
have pin 1 of the header going into the pin 1 hole in the module plug.

The pins of these headers are more massive that those of other components, and may require a
little more time to heat with the soldering iron.

11. The two-pin header with the clip is next. Solder it with the clip toward the front of the board.
This header can be used to connect a logic probe, or to supply +5V to a disk module if needed.

12. The tall electrolytic capacitor for the reset circuit is next. It needs to be oriented with the
negative stripe to the right, toward the “-” symbol on the circuit board as shown:

13. The power-in jack is next. The jack has flat tabs, but the circuit board has circular holes (to save
money – tab slots cost extra). Just fill up the holes with solder, like this:

14. The DB-9 connector is the last piece. Like the power connector, there are circular holes for the

19

holding clips. After you insert it into the board, put solder in the holes with the clips. Then
solder the 9 signal pins.

15. Once you have finished soldering all the pins on the computer, inspect the board to make sure
there are no solder bridges or unsoldered pins. Lightly brush the back of the board with an old
toothbrush or paintbrush to clear off loose debris or tiny solder hairs. Hold the finished board
against a bright light. If you can see light coming through a pin hole, go back and solder it
again, to make sure you have a good electrical connection. This does not apply to the vias, the
plated holes where a trace goes from one side of the board to the other. These can be left open.

20

Testing and Using CPUville Z80 Single-board Computer
Before inserting the ICs in their sockets inspect the soldering to make sure there are no obvious
omissions. It is easy to forget to solder a pin (or a whole row of pins!) when there are so many, as in
this computer kit.

Without the ICs inserted, connect the board to a +5V DC regulated power supply of at least 2 mA
current output. The Power indicator LED should come on. If it does not, you may have a short in the
power traces, or a power supply problem. Once you have verified the power input remove the board
from power.

Place the shorting blocks on the two-pin clock and reset jumpers:

Carefully insert the ICs in their sockets. Double check the IC labels to be sure you are putting the
correct ones in the correct locations. They are oriented with the small cut-out toward the left:

21

You may have to bend the pins a little to make them go straight down, to better align with the pin holes
in the sockets. Make sure you do not fold any pins under when inserting the ICs. This is easy to do if
you are not careful, and can create a frustrating hardware bug that can be difficult to find. A folded-
under pin can look exactly like a normally inserted pin from the top.

After inserting the ICs but before connecting the computer to a terminal, or a PC running a terminal
emulation program, connect power to the computer board. The Power indicator should light up as
before. Once the Power LED is on, check the ICs to make sure none of them are getting hot (can
happen if you place one in backwards by mistake). If everything is OK disconnect the power.

The following sections show the computer being tested without a disk drive attached. Refer to the
section “Connecting a disk drive” for testing the system that has a disk drive.

Connect the computer to a PC serial port using a straight-through serial cable (not a “null modem”
crossover cable). You can also connect the Z80 computer to a PC using a serial-to-USB adapter3. The
computer serial interface is configured as 9600 baud, 8 data bits, no parity, one stop bit (8-N-1)4.

On the PC, start a terminal emulation program. I will use the RealTerm program running under
Windows on a PC for these examples.

Using the terminal emulation program Realterm
Start RealTerm, and make sure it is set up for 9600 baud, 8-N-1 communications (under the Port tab).
Select the ANSI option under the Display As tab. RealTerm uses a default of 16 rows in its display
window, but you should increase this to 24 rows.

Apply power to the computer. It should come out of reset after a second or two and display the monitor
greeting message and the monitor > prompt character. You can also press the Reset button to start
again:

At the monitor prompt enter ? Or help to see a list of available commands:

3 Here is an example from Best Buy in the USA.
4 The Z80 computer can also be connected to a “dumb terminal”, such as a DEC VT-100, for text input and output, but of

course such a terminal cannot store data on a disk.

22

https://www.bestbuy.com/site/insignia-1-3-usb-to-rs-232-db9-pda-serial-adapter-cable-black/5883029.p?skuId=5883029&cmp=RMX&extStoreId=107&ref=212&loc=1&ksid=f6bf88ee-c6cb-4ea2-b93f-a2ca122e5c0e&ksprof_id=14&ksaffcode=pg269204&ksdevice=m&lsft=ref:212,loc:2

The monitor program is very simple. It has to be, to fit in 2 K of memory. Commands are case-sensitive
(lower case only), and no arguments are accepted with the command. The arguments are entered
separately to queries. Hexadecimal numerals need to be entered with upper-case A through F. There is
minimal error checking and no memory management. The input buffer is not cleared after most
commands, so if you hit return on a blank line, you might find that you have re-executed your last
command. But, the monitor program works well if you stay within reasonable limits. The worst you
can do entering commands is to cause the Z80 system to fail. If that happens, just reset. Here is a
discussion with examples for using the various commands.

Monitor commands

dump
Displays a 256-byte block of the Z80 computer's memory. The command takes a 4-character
hexadecimal address as input, with the A through F characters as upper case. The output display shows
the 4-character hexadecimal address of the first byte of each row, then 16 bytes of data as hexadecimal
characters. Here is a dump display of the first 256 bytes of the ROM:

23

This command is very useful for debugging programs, as you can see the machine code, and the values
of your variables.

load
This command takes input from the keyboard, as hexadecimal characters, and loads the input into
memory as binary code. Hit return to stop the input. During the load, the display shows 16-byte rows of
input data in a manner similar to the dump command, without the addresses. Here is an example,
entering the first 16 hexadecimal numbers into RAM starting at location 0x0800:

24

Here is a dump display of RAM starting at location 0x0800. You can see the 16 bytes I entered:

25

The rest of the RAM has digital garbage in it.

You can use the load command to quickly change a byte of program code or a variable, to clear
memory by putting in zeros (just hold down the zero key, the repeats from the keyboard are entered),
and to load small programs by hand.

jump
This command causes program control to be passed to the address you enter. It is the same as the run
command.

run
Same as the jump command.

26

?
Displays a list of the implemented commands. Same as help.

help
Same as ?.

bload
This command is for loading binary files (binary load) over the serial interface into the Z80 computer
memory. The command takes a four-character hexadecimal address input, and a decimal file length
input. Then, it waits for the file to be sent from the PC to the Z80. It works best if you enter the exact
length of the binary file. The bload command will hang if the file is shorter than the length you enter.

The following is an example of loading a binary file using the bload command. We will load and
execute a small program named chr_echo which echoes characters from serial port input (the
keyboard) to serial port output (the screen). The list for this program is in the Selected Program
Listings at the end of this instruction manual.

We can load the file anywhere in RAM, but let's load it at location 0x0800. First we need the exact file
size, which we can obtain by hovering over the file name, or right-click-Properties:

27

We see the file is 20 bytes long. Now we run the bload command, and enter the target address 0800h
(no need to type the “h” in the monitor), and the length as decimal 20. Hit return after entering the
length, and the monitor program lets you know it is ready to receive the file:

28

Now, in the RealTerm Send tab, navigate to the chr_echo.obj file using the … button, click Open, then
click the Send button. After the file is sent “Done” should appear above the blue file progress bar, and
the monitor prompt should reappear, letting you know the command was successfully executed:

29

You can examine the memory at 0800h using the dump command:

30

There you see the program bytes (the first 20 bytes, showing memory contents of DB, 03, E6, … EC),
followed by random garbage bytes that were in the memory before we did the bload command.

You may now run the program using the run command. Enter the address 0800h. The characters you
type are echoed to the screen. For a neater display click the \n button on the RealTerm display. This
sends the cursor to a new line.

The chr_echo program has no exit, so you need to reset the Z80 computer to get out of it. When you
reset the computer, the monitor program starts again. Of interest, resetting the Z80 does not clear the
memory contents. After you reset the computer, You can see that the echo_ch program is still present at
location 0800h using the dump command, and you can run it again using the run command. If you
want to write a program to return to the monitor on exit, you need to put in an instruction to jump to the
monitor_warm_start entry point at 0x046F on program termination.

bdump
This command dumps a segment of binary data from memory to the serial port. It is up to the PC on the
other end to capture this output into a file. We can do this using RealTerm.

31

We can save the chr_echo.obj file which we placed in memory with bload as a new file named
chr_echo.bin. First we set up RealTerm to receive a file of this name from the serial port. Click on
the Capture tab. Write the file name (with complete path) in the File window (or use the … button to
navigate to a file). Make sure Direct Capture is checked.

To tell RealTerm when to stop capturing transferred data, you can enter the number of bytes in the End
After dropdown. For some reason, it is most accurate if you put a multiple of 16 in that window. I have
set it up here to capture 32 bytes, which will be the 20 bytes of the program plus 12 garbage bytes to
get to a multiple of 16.

Now I enter the bdump command in the monitor window, address 0800, number of bytes to dump 32
and hit return. Now, the Z80 is ready to send those 32 bytes from the memory to the serial port with
any keypress.

Click on the Start: Overwrite button in the RealTerm Capture window. The bottom of the display turns
red, indicating that capture is underway. But, the Z80 computer has not sent any bytes yet.

32

Now, click in the display window (that will allow the RealTerm session with the Z80 computer to
receive characters from the keyboard) and hit any key. The 32 bytes will be transferred to the file
chr_echo.bin and the display will return to the monitor prompt.

Navigate to the directory containing the chr_echo.bin file, and check its size in the Properties
window. You can see it is 32 bytes.

33

The following commands are for the Z80 computer with a disk drive attached, placed here with the
commands summary for completeness.

diskrd
This command reads one sector from the disk and writes it into memory at a location you specify. IDE
drives have 512-byte sectors, read as 256 16-bit words. However, this Z80 computer only reads or
writes the lower 8-bits of these 16-bit words, so one sector will contain 256 bytes.

The diskrd command takes as input the memory address, as a 4-digit hexadecimal number, where the
disk data is to be placed, and the sector number as a decimal logical block address (LBA) from 0 to
65,5355. It reads 256 bytes from the sector, and places this data into memory starting at the address you
specified. Note that the command will read sectors using a 16-bit LBA, but the ROM subroutine
underlying the command will take a full 24-bit LBA, and you can write programs using this subroutine
to take advantage of this if you want.

5 Your disk may have more sectors than this, but the monitor command can only take an address up to 65,535.

34

diskwr
This commands takes 256 bytes of data from memory and writes it to one sector of the disk. Like the
diskrd command, it takes as input the memory address of the data to be written as a 4-digit
hexadecimal number, and a 16-bit decimal LBA for the sector to write. Both diskrd and diskwr
need the LBA to be an ordinary decimal number without leading zeros – if you add them, the routines
will hang.

cpm
This command loads 256 bytes of data from the first sector of the disk (LBA 0x000000) into memory
location 0x0800, then jumps to that location. The program in that sector is used to load and start CP/M,
but can be used to start any other operating system the user might care to put on the disk.

Testing the memory
I have written a brief program to verify the presence of 64K RAM, and that the memory configuration
flip-flop is working correctly. This program will work without a disk attached. Download the
memory_test.bin file from the CPUville website http://cpuville.com/Code/CPM.html.

To do the test, use the bload command to load the memory_test.bin file into memory at location
0x0800, then the run command to execute it. It takes about 15 seconds to complete. If successful, it
should print output as below:

35

http://cpuville.com/Code/CPM.html

If the memory test fails, recheck the pins of the RAM ICs to make sure they are seated properly. If you
cannot get it to work, please contact me for advice.

If the memory test works, we can be confident that the board is built correctly. Now, disconnect the
power, and connect a disk drive as described in the following section.

Connecting a disk drive
This Z80 computer will work with most IDE disk drives (see the Table of Tested Disk Drives at the end
of this manual). The disk size should be 128 megabytes or higher if you want to install CP/M. This is
not to have enough room, because a full-blown CP/M system uses only about 1 megabyte of disk
space, but because the CP/M system described here uses simplified code that does not use disk space
very efficiently6. In particular, it uses simplified arithmetic to map CP/M sectors onto the LBA sectors
of the hard disk, which skips a lot of space. Also, the CP/M system I developed uses only 128 bytes of

6 Recently I have updated the CP/M system for this computer, increasing the disk size and changing the mapping
algorithm to use disk space much more efficiently. Visit http://www.cpuville.com/Code/CPM.html#cpm-update for
details, and to download the updated code.

36

http://www.cpuville.com/Code/CPM.html#cpm-update

each sector for data. This is the native sector size that CP/M uses, since it came out of the era in the
mid-1970s when only floppy disks were used, and those disks used 128-byte sectors. CP/M offers
blocking and deblocking code to more efficiently use disk space, by taking 256- or 512-byte sectors
and breaking them into 128-byte pieces, but I did not use this code in my system, again out of a desire
to make it as simple as possible.

The disk drive plug needs to be oriented correctly. If keyed, as described above, it cannot go into the
socket backwards. However, if it is not keyed, you need to take care that pin 1 of the plug goes onto pin
1 of the socket, as indicated by the “Pin 1” label on the circuit board, and by a small arrow engraved on
the plastic shroud of the connector.

If using a mechanical disk drive, you can use a computer power supply to provide power to both the
drive and the Z80 computer. Take the +5V and ground from the main power connector to the input jack
on the Z80 computer board, or to the auxiliary power connector, and connect a power supply disk
power connector to the drive. That way, both the computer and disk drive share the same ground, which
is important to prevent damage to the computer or the drive electronics. Connect the hard disk to the
circuit board IDE socket using a standard 40-conductor IDE cable. Make sure that pin 1 of the circuit
board socket is connected to pin 1 of the disk drive socket.

Note in the above picture the AT-type computer power supply, with the hard disk drive receiving power
from one of the plugs coming from the power supply. The +5V power and GND for the Z80 computer
are coming from the proper pins of the main power supply plug. There is also a jumper wire between
the power supply ON input (PS_ON#, pin 14) and ground which is needed for the power supply to turn
on.

37

If you are using a solid-state IDE drive, or a compact flash drive in an adapter with a separate power
connector, you can use the two-pin connector auxiliary power connector to supply low-current +5V
power to the drive. You will have to use your own wires to make the connection. Here is a photo of a
compact flash drive in an adapter7 with attached power supply wires:

Many small solid state flash modules do not require a separate power input; you can get low-current
+5V power from pin 20 of the drive connector instead. The photo on page 14 shows one such “disk-on-
module” in the socket.

See the section above in Building the Computer for more details about pin 20 in the IDE socket.

Testing the disk drive
You can test the disk drive using the monitor diskwr, diskrd, and dump commands. Of course,
once you write data to a disk sector, any data on that sector will be overwritten and lost. This is
especially true of sector 0, which on disks salvaged from old PCs will have partition information. The
cpm command in the ROM monitor reads disk sector 0 into memory, so you will need to place code
into this sector if you want to use this command to start an operating system. I suggest you do not try to
preserve partitions on your disk, but rather dedicate a disk for use on the Z80 computer for
experimentation and to try the CP/M operating system.

With the disk drive connected, apply power to the computer and take it out of reset. You should again
see the greeting message and get the monitor prompt.

7 This brand and model adapter can also get power from pin 20, but it makes a nice photo to show how to connect the
power supply wires for modules that require them.

38

To test the disk, we will use the load command to place an easily recognizable data pattern into the
computer memory, then write this pattern to a disk sector using the diskwr command. Next, we will
read it from the disk and place it in a different area of memory using the diskrd command. Then, we
will examine this second memory area with dump, and look for that data pattern. If we see the pattern,
we know that the disk write and read commands worked correctly. Here is the detailed test procedure.

First, examine the memory pages (that is, the 256-byte blocks of memory) at 0x0800 and 0x0900 using
the dump command:

The memory will contain random data at system power-on. Your memory data will probably look
different than this.

Now, load page 0x0800 of memory with an easily recognizable pattern of data using the load
command:

39

You can use whatever pattern you like, but it should be easily recognizable.

Now, write the memory page at 0x0800 to disk sector 0 using the diskwr command. You should see a
brief flash on the Drive Activity LED on the computer circuit board when you do this8. Then, read the
same sector back into memory at 0x0900 using the diskrd command (again, the Drive Activity LED
should flash):

Now, display the memory page at 0x0900 using the dump command:

8 Some disk adapters have their own Disk Activity LED. If your are using one of these adapters, the LED on the computer
board may not light up.

40

If you see your data pattern there, you know your disk is working properly, and you can read and write
sectors. You can experiment with other patterns, other memory locations and other sectors.

Once the disk is working properly you can install CP/M onto the disk.

Installing CP/M version 2.2

CP/M system update
I have updated the CP/M CBIOS described in these sections to create larger CP/M disks, and to use
disk space more efficiently. I also updated the support programs needed to install CP/M. The updated
CP/M system is installed in the same way as the earlier system described here, except the file names
and sizes have changed. The screenshot images and the instruction text in this section have not been
changed to reflect the updated CP/M system. However, I have added footnotes in several places to
clarify the differences you will see if you install the updated CP/M. Please visit
http://www.cpuville.com/Code/CPM.html#cpm-update to get details, and to download the updated
code.

About CP/M
The CP/M operating system was the first commercially successful disk operating system for
microcomputers. As such, it received designation by the IEEE as a Milestone in Electrical Engineering
and Computing. See the article at
http://theinstitute.ieee.org/technology-focus/technology-history/groundbreaking-operating-system-is-
named-an-ieee-milestone.

This operating system was designed by Gary Kindall in 1974, to run on microcomputers with an 8080
processor and 8-inch IBM floppy disks. However, it was designed to be portable to many different

41

http://theinstitute.ieee.org/tech-history/technology-history/groundbreaking-operating-system-is-named-an-ieee-milestone
http://theinstitute.ieee.org/tech-history/technology-history/groundbreaking-operating-system-is-named-an-ieee-milestone
http://www.cpuville.com/Code/CPM.html#cpm-update

machine architectures, by having a machine-dependent, customizable basic input-output system
(CBIOS) that had the software to operate the disks, console and other peripheral hardware, and a
machine-independent basic disk operating system (BDOS) and console command processor (CCP), to
process commands and to create and use a disk file system. Since the 8080 processor uses a subset of
the same machine code as the Z80, CP/M could be used on both 8080 and Z80 machines. CP/M use
spread to a wide variety of machines using a wide variety of disk drives and peripherals. Eventually,
the introduction of 16-bit microcomputers using MS-DOS made 8-bit microcomputers (and CP/M)
obsolete, but it is still used and enjoyed by hobbyists and educators running 8-bit Z80 or 8080 systems.

CP/M Source Code
Even though CP/M has been obsolete for many years, its status with respect to the source code was
unclear, in part because the rights were transferred to a series of companies. The operating system was
originally owned by Digital Research, Inc., then passed to a spin-off named Caldera, Inc., and then to
Lineo, Inc. In 2001, the CEO of Lineo, Bryan Sparks, gave permission to Tim Olmstead to place the
CP/M source code on his web archive of CP/M software, “The Unofficial CP/M Web Site” at
http://www.cpm.z80.de/ for download for educational purposes. But, it was unclear if the code could be
distributed by others, so I directed my customers to the Unofficial CP/M Web Site to download and
assemble the CP/M code. Eventually, Lineo spun off the company DRDOS, Inc., which inherited the
rights to CP/M. Bryan Sparks is CEO of DRDOS.

A recent e-mail exchange between Bryan Sparks and retired programmer Scott Chapman has clarified
the status of CP/M, resulting in the granting of non-exclusive rights to distribute the CP/M source code.
Here is the “license” agreement from Bryan Sparks’ email:

“Let this paragraph represent a right to use, distribute, modify, enhance, and otherwise make
available in a nonexclusive manner CP/M and its derivatives. This right comes from the
company, DRDOS, Inc.'s purchase of Digital Research, the company and all assets, dating back
to the mid-1990's. DRDOS, Inc. and I, Bryan Sparks, President of DRDOS, Inc. as its
representative, is the owner of CP/M and the successor in interest of Digital Research assets.”

This new development was documented in a July 15, 2022 article in the Register.

So I am allowed to distribute the CP/M code from my website. You can download assembled binary
files for the BDOS and CCP parts of CP/M 2.2 (the machine-independent parts) and the CBIOS (the
custom machine-dependent part), and other binary helper files mentioned below, from the CPUville
web site page at http://cpuville.com/Code/CPM.html. The binary file for CP/M 2.2 is cpm22.sys, and
for the CBIOS is z80_cbios.bin. The other files you will need to install CP/M on the Z80 Single-board
computer are format.bin, putsys.bin, cpm_loader.bin, and monitor.bin. A list file for the CBIOS is in
this manual, and the CP/M source code is still available from the Unofficial CP/M Web Site if you are
interested.

Preparing the disk for CP/M
The CP/M file system directory entries are very simple. The first byte of a directory entry gives the
status of the entry. If the entry is inactive (the file has been deleted or not yet created), the status byte
has a value of 0xE5. To prepare a disk for the CP/M system, one needs only create a number of
directory entries that start with this value.

But it is easier than that, because if a directory entry is inactive, CP/M does not care what else is in the

42

http://cpuville.com/Code/CPM.html
https://www.theregister.com/2022/07/15/cpm_open_source/
http://www.cpm.z80.de/

entry. It will create a completely new entry when it needs to. So, all we need to do is write the value
0xE5 to all the sectors of the CP/M disk in order to prepare it.

Note that I refer to the “CP/M disk”. This is a logical construct, created by the disk parameter tables in
the CBIOS. These tables may or may not accurately represent the physical disk system. In the CBIOS I
created, I left the CP/M disk system as it originally was, with four disks, each with 77 tracks, 26 sectors
per track9. A CP/M call to read or write a particular disk, track, and sector is translated into a unique
LBA address for the hard disk by the disk read and write subroutines in the CP/M CBIOS.

The format program calls the CBIOS routines to write 0xE5 to all the sectors of the four CP/M disks in
our system. In order to work properly, the CBIOS code needs to placed into the system memory at
location 0xFA00 before we load and execute the format program, since the CBIOS is assembled for
that target address. Use the monitor bload command, and load the file z80_cbios.bin into the
computer memory at 0xFA00:

Note the file length in this example may be different from yours if you are using a later or customized
version of z80_cbios.bin. Look at the file Properties to get the exact size before you make the transfer.

Next, load the format.bin file into memory at 0x0800:

Now, run the format program using the run command:

9 The updated CP/M system has 4 disks, each with 256 tracks of 64 sectors each.

43

The Drive Activity LED should light up for about a minute and a half while the format program fills
the CP/M disk with 0xE510. When the light goes off, the monitor prompt should re-appear. The disk is
now ready for the CP/M files to be placed on it.11

Putting the CP/M System Files onto the disk
The CP/M file system set up in the CBIOS reserves the first 2 tracks of each CP/M disk for the system
files12. This is important, because every time CP/M is started, whether from a cold boot or a warm
restart, the system is loaded from the disk into memory. You can see this code in the CBIOS listing, in
the WBOOT subroutine. Sector 1 of track 0 is reserved for boot code (not used in this system – the boot
code is in LBA sector 0 of the IDE disk instead), and the rest of the sectors in tracks 0 and 1 have a
memory image of the operating system.

To set this up properly, we need to use the CBIOS routines for disk writing to put the system onto the
disk from memory. For this, I have written a putsys program. It is similar to the format program, in that
is uses the CBIOS disk write subroutines, but differs in that it copies data from address 0xE400 to the
end of memory, and places it on the disk.

So first, we need to put CP/M into memory. The cpm22.sys file has the assembled code for the CCP
and BDOS, with a dummy BIOS jump table at the end. It is important that we load cpm22.sys into
memory first, then load the z80_cbios.bin file on top of it (after it), so that the true BIOS jump table
from z80_cbios.bin will be present in memory at the locations previously occupied by the dummy
BIOS jump table. We again use the monitor command bload to place these files into memory at the
proper places.

First, place the cpm22.sys file at address 0xE400. Then place z80_cbios.bin at 0xFA00:

10 The updated CP/M system format program takes about 11 minutes to complete, and has terminal output showing
progress.

11 With some experimentation I have found that it is not absolutely necessary to format the disk before installing CP/M. If
you do not format the disk, when you list the CP/M disk directory, you may get a series of blank entries or jumbled
strings displayed. You can fix this by erasing the entire directory of the disk with an ERA *.* command.

12 The updated CP/M system has tracks with 64 sectors, so only one track is reserved.

44

Then, use bload to place the putsys.bin file into memory at location 0x0800:

Now, run the putsys program at 0x0800. The drive activity light will light briefly – we are writing
many fewer sectors than we wrote with the format program. Now, CP/M will be present on the disk
system tracks.

Installing the CP/M loader
The final piece of the puzzle is to place the cpm_loader program into sector 0 of the hard disk. This
program is similar to the putsys program, but acts in reverse; that is, it gets the CP/M system from the
disk and places it into memory. Unlike format and putsys, it is designed to run before the CBIOS is in
memory, so uses its own versions of the CBIOS disk read routines, combined with ROM monitor
subroutines, to get the code from the disk. When it is finished copying CP/M into from the disk into
memory, it switches the memory configuration to all-RAM with an OUT (1),A instruction, then
jumps to CP/M.

45

We will use the bload command to first place the file cpm_loader.bin into the computer memory, then
use the diskwr command to put it into sector 0 on the hard disk:

Now that the disk is set up to run CP/M, reset the computer, and enter the cpm command at the monitor
prompt:

You now see the CP/M prompt, A>, which indicates that CP/M is running, and that disk A is active.13

To summarize, these are the steps to install CP/M 2.2:

1. Load z80_cbios.bin at 0xFA00

2. Load format.bin at 0x0800

3. Run format.bin

4. Load cpm22.sys at 0xE400

5. Load z80_cbios.bin at 0xFA00

6. Load putsys.bin at 0x0800

7. Run putsys.bin

13 The updated CP/M system will also print a greeting message when started for the first time (cold boot).

46

8. Load cpm_loader.bin at 0x0800

9. Write the memory page 0x0800 to disk sector 0

10. Reset the computer

11. Start CP/M using the monitor cpm command.

Running CP/M

Built-in commands
I will not attempt to reproduce here a guide to running CP/M. The original Digital Research CP/M 2
system manual has been converted into a web page:
http://www.gaby.de/cpm/manuals/archive/cpm22htm/. Here you can find all the details about using
CP/M, with all the commands listed. However, we need to do a little more work here to create a truly
usable CP/M.

CP/M 2.2 has only six built-in commands. These are DIR (list a disk directory), ERA (erase a file),
REN (rename a file), SAVE (save memory to a file), TYPE (display a text file on the screen), and
USER (change a user number). Note there is no command that will copy or move a file, no command
to show how much disk space is available, or what the file sizes are (DIR only displays the file names).
These functions can be added later using transient commands (see below).

To get used to the CP/M commands, start with DIR (you can enter commands as upper or lower case):

The “No file” output shows that there are no files in the directory of disk A. We can create a file using
the SAVE command. This command will take a number of 256-byte memory pages, starting at 0x0100,
and save them to the disk as a CP/M file. For an example, the command “save 1 test.com” will save
one page (256 bytes) of memory, and give it the name TEST.COM. The file will of course contain
garbage, but that is not a concern for now. After entering the SAVE command, enter the DIR command
and you will see the directory entry for the file:

47

http://www.gaby.de/cpm/manuals/archive/cpm22htm/

We can rename the file with the REN command:

Note that the target file name comes first in the argument for the REN command.

Each disk maintains a separate directory for each of multiple users, from 0 to 15. This feature is not of
much use to us, but for completeness we can demonstrate it. Change to user 1 and enter the DIR
command:

You can see user 1 has no files on disk A. Now create a file, with the name test2.com. Switch back to
user 0, and display the directory. You see only test1.com. Switch to user 1, and do DIR, and you see
that user's test2.com file.

48

User 1's files are not visible to user 0, and vice-versa.

We can erase files with the ERA command. Here we erase the files from both user's directories:

The TYPE command displays a text file to the console, but since we don't have any text file on the disk
at present we won't demonstrate it now.

The system configuration set up in the CBIOS has 4 disks. To switch from one disk to another, enter
the disk letter followed by a colon:

49

If you try to access a disk that is not available (here, for example disk E), you will get an error message.
Hit return and the system will go back to the A disk:

This is a very limited set of commands. Many more commands are available as transient commands.

Transient commands
Originally, CP/M was created with multiple floppy disks, and the first disk came from the manufacturer
with lots of programs (transient commands, or .COM files) that extended the system so that it was easy
to create text files (with a text editor, ED.COM), assemble programs (ASM.COM), copy files
(PIP.COM), and display disk statistics, such as file size and room remaining (STAT.COM). For
example, if STAT.COM was on the A disk, entering STAT at the CP/M prompt would give a display of
the room remaining on the disk. Essentially, a .COM file is a command that extends the functions of
CP/M. When one enters the command, CP/M searches the directory of the current disk, and if it finds a
file with the name of the command and a .COM extension, it loads that file into memory at location
0x0100 and jumps there to execute it. In the original CP/M, getting new programs was as simple as
putting a disk in drive B, and copying the files from that disk using the PIP command.

But how can we get CP/M files into the CPUville Z80 system from outside? The CPUville Z80
computer has only one disk interface, and only one serial port. With CP/M running, the serial port is
dedicated to the CP/M console, for character input and output, and cannot be used for binary file
transfers. If we had two serial ports, we could perhaps use a program like XMODEM running under
CP/M to do binary transfers using the second port, but we cannot do that here14.

One answer is to use a RAM monitor program, that has the same commands as the ROM monitor, but
runs in the CP/M environment – that is, with the memory in configuration 1 (all-RAM). Then we can
do binary transfers into the Z80 memory through the single serial port using monitor commands.

I created the RAM monitor program by re-assembling the ROM monitor with a target address (code
origin) of 0xDC00 instead of 0x0000. I had to put some additional code at the start that copies the rest

14 However, a CPUville Z80 computer user has written two utility programs, PCGET and PCPUT that will allow basic file
transfer over the single serial port using the XMODEM protocol. See the section “Using the PCGET and PCPUT file
transfer utilities” in this manual.

50

of the RAM monitor program from location 0x0100, where CP/M would load it, to high memory at
0xDC00, so it would be out of the way of any code that we might want to place into lower memory to
save as a file with the CP/M SAVE command. Another important difference between the ROM and
RAM monitors is that the cpm command given to the RAM monitor will do a warm boot of CP/M, so
any code in memory will not be overwritten. The cpm command in the ROM monitor puts the
cpm_loader in location 0x0800 first, then jumps to it, overwriting code that may be in RAM in that
area. The RAM monitor file is named monitor.bin.

To get transient command files onto the CP/M disk, we will run the RAM monitor under CP/M, use the
monitor command bload to place a command binary file into the Z80 computer's memory at 0x0100 ,
switch back to CP/M, and use the built-in SAVE command to create a .COM file.

So how do we get the RAM monitor program itself into memory, and onto the CP/M disk? We need to
“bootstrap” it, using the RAM monitor program itself. It is a little complicated, but you only have to do
this once. Here is how.

First, we start CP/M with the ROM monitor cpm command. This sets the memory configuration to 1
(all RAM), puts the CP/M system into the memory, and sets up memory page 0 (addresses 0x0000 to
0x00FF) with the data CP/M needs to operate. Then, we reset the computer. We see the ROM monitor
greeting again. The system reset causes the memory configuration to switch back to configuration 0
(2K ROM and 62K RAM), so we can use the ROM monitor, but it does not disturb the CP/M data in
RAM memory page 0, or the CP/M code in high memory.

Now, using the ROM monitor, we will place the RAM monitor program, file name monitor.bin, into
high memory, but below CP/M.

The RAM monitor code, has a short prefix, which will be used to relocate the file when we load it with
CP/M. This means that we should load the monitor.bin file at 0xDBF2. Then, the RAM monitor code
proper will start at 0xDC00 as designed. But, the ROM monitor uses stack space at 0xDBFF, so if we
bload the file at 0xDBF2 the stack will be overwritten. To solve this problem, we just move the stack
out of the way first with these commands:

0800 31 EF DB ld sp,0DBEFh ;move stack pointer out of the way
0803 C3 6F 04 jp 046Fh ;ROM monitor warm start
We use the load command to put these bytes into memory at 0x0800 and execute them with run:

51

Now we can safely load the RAM monitor.bin file into memory at 0xDBF2:

52

Then, we run some tiny code (again entered with the load command) to switch to memory
configuration 1 and run the RAM monitor:

0800 D3 01 out (1),A ;switch to memory configuration 1 (all-RAM)
0802 C3 00 DC jp 0DC00h ;jump to start of RAM monitor

Now you see a monitor prompt (>), but it is now from the RAM monitor, running with the computer
memory in configuration 1, and not the ROM monitor. To verify this, look at the first page of memory
with the dump command:

There you see the CP/M warm start jump command at location 0x0000 with some other data. If we
were still in memory configuration 0, this area would be filled with ROM code.

Now, using the RAM monitor, we can load the monitor.bin file again, this time at 0x0100:

53

Now switch to CP/M by entering the RAM monitor cpm command. Unlike the ROM monitor cpm
command, the cpm command in the RAM monitor does a CP/M warm start. When CP/M does a warm
start it uses its own code in the CBIOS (which is in memory from 0xFA00 and above) to copy its
BDOS and CCP code from the disk to the memory locations from 0xE400 and higher, but leaves the
rest of the memory undisturbed15. So, the image of the RAM monitor at 0x0100 stays safe while CP/M
reloads and restarts.

Now, we can use the CP/M SAVE command to create the disk file MONITOR.COM. We have to tell
CP/M how many memory pages to save (one page = 256 bytes). If we divide the size of the monitor.bin
file by 256 we get 2008/256 = 7.84. This means we need to save at least 8 pages of memory with the
SAVE command. Give the file the name MONITOR.COM:

15 CP/M behaves this way to allow user programs to use the space from 0xE400 to 0xF9FF for their own code. When user
programs return control to CP/M, it will load its code back in this space.

54

Check the disk directory, and you will see the MONITOR.COM file in place. Once this file is on the
disk, all we need to do is enter MONITOR at the CP/M prompt, and we can use the monitor commands
to do binary file transfers. When we are done with the monitor, we can enter the cpm command to
return to CP/M:

We can use the MONITOR.COM bload command to put any program we want into memory at
0x0100, provided it is not larger than 55,807 bytes (to keep it from running into monitor variables and
stack space in page 0xDB00). Once a file is loaded, we can switch back to CP/M, and then SAVE the
programs. We can load and save other types of files as well.

The first files we should load are the standard CP/M transient command files. The binary files for these

55

commands can be obtained from The Unofficial CP/M Web Site. The binaries from a CP/M distribution
disk are here: http://www.cpm.z80.de/download/cpm22-b.zip. The important ones are PIP.COM,
ED.COM, ASM.COM, LOAD.COM, and STAT.COM. There is also DUMP.COM which displays file
contents.

Let's use the MONITOR and SAVE commands to get STAT.COM onto our computer. Download a copy
of STAT.COM from the above web site archive, enter the MONITOR command, and use the monitor
bload command to put the file into the Z80 computer memory at 0x0100:

After the file has been loaded, switch back to CP/M using the monitor cpm command. From the File
Properties dialog on the PC, you can see that the STAT.COM file is 5,248 bytes long; it takes up
5,248/256 = 20.5 pages. So we need to save 21 pages to get all of the file. After SAVEing the file, you
can see the file in the directory:

56

http://www.cpm.z80.de/download/cpm22-b.zip

If you execute the STAT command, you can see how much room is available on the active CP/M disk:

If you give STAT a file name argument, it will tell you how big the file is:

57

58

Using the PCGET and PCPUT file transfer utilities

The method of using the MONITOR.COM program to do binary transfers is a little awkward. I had
sought to use any of several XMODEM-type CP/M programs to do file transfers, but they all required a
system with two serial ports, one for the terminal, and one for a modem to do the file transfer.
However, customer Stephen Williams has modified two XMODEM CP/M utilities to perform file
transfers from the PC to the CPUville Z80 kit computer over the single serial port. These utilities,
PCGET and PCPUT were created by Mike Douglas for his Altair 8800 clone computer. He derived
them from the original XMODEM-based file transfer utilities created by Ward Christensen in 1977 for
his early bulletin board systems. With the permission of both Mike Douglas and Stephen Williams I
have placed the code for these utilities on the CPUville CP/M code page for download.

PCGET will transfer a file from the PC over the serial interface onto the CP/M disk, and PCPUT will
transfer a file from the CP/M disk to the PC. To do this, one must be using a terminal emulation
program with the ability to do XMODEM-protocol file transfers. In the Linux environment, minicom
will do this. In the Mac environment, the serial program will work. In Windows however, the Realterm
program used frequently in this instruction manual does not do XMODEM transfers. Instead, you can
use the ExtraPuTTY terminal emulation program.

One last thing: to get PCGET.COM onto the CPUville computer you will have to do the
MONITOR.COM binary transfer and CP/M SAVE procedure, as explained above. Transfer the
PCGET.BIN binary file into memory at 0x0100 using the monitor bload command, then switch to
cpm and use the CP/M SAVE command to create the file PCGET.COM on the CP/M disk. After that,
you can use PCGET as a CP/M command to do file transfers for the rest of the CP/M transient
commands and other files.

For an example, I will show using PCGET to transfer the file CAPTURE from the PC disk to a CP/M
system, using the ExtraPuTTY terminal emulation program in the Windows environment.

Start ExtraPuTTY. On the initial window, select the Serial communication type, the COM port
associated with your serial interface (COM1 here), and 9600 baud:

59

https://sourceforge.net/projects/extraputty/
http://cpuville.com/Code/CPM.html
https://en.wikipedia.org/wiki/XMODEM
http://altairclone.com/

The terminal window opens. Take the Z80 computer out of reset, and you should get the ROM monitor
greeting message and prompt. Here, I have started CP/M, and done a CP/M directory display:

60

You can see I have already loaded PCGET.COM using the MONITOR.COM method.

If you execute the PCGET command, a brief display reminds you of the usage:

61

To load a file from the PC to CP/M, execute the PCGET command with a file name. Note that file
names are not transferred by PCGET or PCPUT, so the file name you use as the argument for PCGET
is the name CP/M will assign to the file, not the name that the file on PC currently has. In this example,
the file name is “capture”:

62

At this prompt, navigate to the Files Transfer menu, and select Xmodem, Send (you want the Xmodem
program in ExtraPuTTY to send the file to the serial port, and so to the Z80 computer):

63

A file menu opens that allows you to select the file to send. Click “Open”, and the transfer begins. Once
the transfer is finished, PCGET quits with the message “Transfer complete” and sends you back to the
CP/M prompt. Another dir command should show that the file “capture” is now on the CP/M disk:

64

PCPUT acts in a similar fashion, except you would select Xmodem, Receive for the file transfer.

Using minicom in Linux, the procedure is similar. To send the file from the PC to the Z80 computer, do
ctrl-A, S to open the Send File menu. You select the XMODEM protocol, then a window to select the
file opens. Once a file is selected, the transfer proceeds.

This concludes a description of the basics of using CP/M, including how to get binary files into the
CP/M file system through the serial port of the Z80 computer. The Digital Research CP/M 2 System
Manual, available on-line as stated above, explains how to use CP/M in full detail.

There are thousands of CP/M programs available, both on the web sites mentioned above, and on other
archives. The Humongous CP/M Software Archives at http://www.classiccmp.org/cpmarchives/ is just
one example. There is also Retrocomputing Archive at http://www.retroarchive.org/ There I found the
Sargon program that plays chess better than I can.

65

http://www.retroarchive.org/
http://www.classiccmp.org/cpmarchives/

Schematics and Explanations
The schematics in this section are the ones used to create the circuit board for the CPUville Single-
board Z80 computer. They use global labels instead of wire symbols to show the connections to the
various pins. This simplifies breaking the schematic into parts for explanation. I have also produced a
schematic of the computer with wire symbols instead of the global labels, and it can be found on the
CPUville website.

Z80 CPU

The Z80 CPU (central processing unit) is the heart of the computer. It takes in data or machine code
instructions from the computer memory or input ports, operates on the data or interprets the machine
code, and puts out data to the memory or output ports. The address outputs A0 to A15 express the
address for the memory or input/output ports. The data bus D0 to D8 is bi-directional, and will either
output data, or read data or machine code depending on the processor instruction being executed.

The system control lines, Read*, Write*, I/O_Req* (input-output request) and MemReq* (memory
request) control the ports or memory that the CPU is communicating with. For example, if the
processor is executing an instruction that requires it to read data from an input port, it activates the
I/O_Req* and Read* control signals. The computer system looks at these signals, and the address
output, and responds by placing data from the appropriate input port on the data bus.

In these schematics, a control signal with an asterisk (*) is active-low, that is, when the signal is
asserted by the CPU, it is low, or 0 volts. If a control signal label has no asterisk, it is active-high.

66

In addition to the address outputs, the bi-directional data bus, and the control outputs, there is the
Reset* input, which when low causes the processor to enter the reset state. It will idle until Reset* goes
high, then begin execution at address 0x0000.

The clock input is a simple square-wave oscillator. A Z80 can run as slow as a few cycles per second
(HZ), or as fast as 2.5 million cycles per second (MHz). This computer has a 1.8432 MHz clock
oscillator that provides both the CPU clock and the clock for the serial port. A jumper allows you to use
different CPU clock speeds, fed in to the system connector, while the serial port remains functional
with its 1.8432 MHz clock.

The other control outputs, Refresh*, Halt*, BusAck*, and M1*, and the control inputs Wait*, Int*,
NMI*, and BusReq* are not used in this computer system, but are connected to pins on the system
connector, for use by outside circuits or expansion boards.

67

ROM and RAM memory

The processor spends most of its time interacting with the computer memory, shown here. The 2716 IC
is read-only memory (ROM), and contains the code the processor needs when it starts, and in this
computer, a simple monitor program. The RAM ICs are random-access memory (RAM), and can be
read or written. You will notice the Read* and Write* control signals from the processor are connected
to these, but only the Read* signal to the ROM. Each memory unit has address inputs from the
processor, and connections to the bi-directional data bus.

In digital electronics, outputs must not be connected to outputs, since if one output is high and the other
low, the result will be somewhere in between, neither high or low, neither 1 or 0, and this is
unacceptable. The solution is to have three-state output circuits on the devices with outputs that are
connected together, like the ones connected to the data bus. These three-state outputs can be high, low
or “third state”, which is a high-impedance state, like a cut wire. The processor, memory ICs, and port
ICs in this computer all have built-in three-state outputs on their data lines. The chip select inputs
(CS_ROM, CS_RAM0 and CS_RAM1) determine if the device outputs are third state or not. The
control logic of the computer system must be arranged so that one and only one device is putting data
onto the data bus at any time, meaning only one chip select logic signal is active.16

The computer has 64K RAM, but you see only A0 to A14 on the RAM ICs. This is because each RAM
16 The CS_ROM and CS_RAM signals are actually active low, and should have asterisks in there names, sorry for the

omission.

68

IC holds 32K bytes, and the A15 signal is used in the chip select logic to decide which RAM IC is
active. CS_RAM0 activates the RAM with data from address 0x0000 to 0x7FFF, and CS_RAM1
activates the RAM with data from 0x8000 to 0xFFFF.

69

Serial Interface

The serial interface is used by the computer to communicate with a terminal. A serial interface sends or
receives data over one wire one bit at a time, but the computer uses parallel data transfers over its data
bus 8 bits at a time. The bridge between the parallel and serial data streams is the 8251A universal
asynchronous receiver-transmitter (UART). It takes parallel data from the computer system data bus,
and then sends it out one bit at a time over the TxD output. Similarly, it receives data one bit at a time
from the RxD input, and places it as parallel data on the data bus for the system to read.

The serial interface in this computer uses the RS-232 protocol, which defines how data is to be sent and
received. This protocol is used by many different serial devices, so using it in this computer allows one
to connect it to a variety of terminal types. RS-232 defines bit rates for input or output. A rate of one bit
per second is one baud. This interface uses 9600 baud. To obtain this baud rate, the UART clock
frequency of 1.8432 MHz is first divided down to 153600 Hz by a divide-by-12 IC, the 74LS92. This
rate is further divided by circuitry in the UART to obtain the final 9600 baud rate that is used to
transmit and receive data. In addition, the RS-232 protocol defines high and low voltages differently
than the usual +5V and ground. It uses instead +12V and -12V. One could supply these voltages to the
interface with a separate power supply, but the company Maxim created the Max232 ICs seen here to
boost the voltages into the proper range for serial transmission. These chips use the capacitors and a
charge-pump circuit to boost the voltage, and require only the same +5V and ground inputs as the rest

70

of the ICs in the computer.

The UART communicates with the computer system through input and output ports. Port 2 is the data
port, which is where the computer writes and reads data. Port 3 is the control port. Writing to port 3
configures the UART, and reading from port 3 checks the status, to see if there is incoming data to be
read, or if the UART is ready to accept data to transmit. Since the UART is connected to the data bus, it
has three-state data outputs, controlled by the chip select (CS) input. A truth table and some of the chip
select logic circuitry is shown (the Addr_2_or_3 signal comes from the generic array logic (GAL) IC,
explained below). Also, the UART has a Reset input which is active-high. When the computer
processor is reset, the UART is reset too.

71

Serial Port Connector

The serial port connector deserves its own explanation. You may have noticed in the serial interface
schematic that the RS-232 signal line named TxD (transmitted data) is passed through the Max232 IC
to the UART RxD (received data) input. Similarly, the UART TxD output is sent to the RS-232 RxD
signal line. This is because there are two configurations for RS-232 connectors, called data
communications equipment (DCE) and data terminal equipment (DTE). Originally, RS-232 was used to
connect a data terminal to a modem. The data transmitted from the terminal was received by the
modem, and the data transmitted from the modem was received by the terminal. It was decided to name
the signals in the interface (and the plug pins) after their functions from the point of view of the data
terminal equipment. So, RS-232 pin TxD has the data that is transmitted (sent) from the DTE, to be
received by the DCE. The PC serial port is configured as DTE, and to make things simple I made the
Z80 computer’s port configured as DCE, like a modem would be. A straight-through serial cable is
used to connect them.

Of course, it is possible to connect a DCE to a DCE, and a DTE to a DTE. It involves crossing over of
the RS-232 RxD and TxD wires. These cables are called null modem or crossover cables.

The DTR (data terminal ready), DSR (data set ready), CTS (clear to send), and RTS (ready to send)
signals are used by some DTE and DCE to configure the interface properly, and in schemes used to
control the flow of data over the interface. The port handling software in this Z80 computer does not
look at the DTR and RTS inputs, but does assert the DSR and CTS signals, in case your particular
terminal or terminal emulation software requires them.

72

PATA Interface

This is the parallel advanced-technology attachment (PATA) interface for the disk drive. This interface
is also informally called an IDE (integrated drive electronics) interface, since it was almost exclusively
used to connect disk drives with integrated drive controllers to a computer bus in the early days of
personal computers. I have used this in the Z80 computer because it is very simple to implement
(basically only requires a socket attached to the computer buses) and there are lots of surplus IDE
drives and modules available that will work with it.

The pins on the interface create an input/output port arrangement of 8 ports, used to control the disk,
and read and write data. Like other devices connected to the data bus, the data pins are three-state,
controlled by chip select inputs (CS1FX- and CS3FX-). In this computer, the disk is mapped to ports 8
to 15. Address line A3 is used in the chip select logic (selected if 1), and A0 to A3 used to select the
port being written or read. I will not discuss the details of how these ports are used, but one can see
how the Z80 computer accesses the disk by looking at the Customized CBIOS listing in the Selected
Program Listings section. Read* and Write* control signals from the CPU determine reading from or
writing to the ports.

The disk contains data in 512-byte records called sectors, each has a unique address. To read a sector,
the computer inputs though the ports the address of the sector to be read, and some configuration
information. The disk seeks the sector, and when it is available, it signals the computer that it is ready,
and the computer then reads the data bus 256 times in a row to obtain the data. Each data word from the
disk is 16-bits wide. However, in this computer, I only read the lower 8-bits of each word, with the high
bits being grounded through resistors.

There is a Reset* input to reset the drive controller (which is inside the disk), and an output for an LED
to indicate drive activity.

73

Memory Configuration Logic

As mentioned in the introduction, the memory in this computer can be placed in one of two different
configurations. The default configuration, configuration 0, is 2K ROM, and 62K RAM. The
configuration used by the CP/M operating system, configuration 1, is all-RAM 64K. The circuits that
set the two different configurations are shown here.

The configuration flip-flop, shown at top above, is a one-bit signal that is set to 0 by writing to output
port 0, and set to 1 by writing to output port 117. This flip-flop is also connected to the system Reset*
control signal, to ensure that when the computer starts up the flip-flop is in configuration 0. This is
important because the Z80 starts by reading data from address 0x0000, so it needs to find code there
immediately, which is in the ROM. CP/M, on the other hand, expects to find RAM at low address
locations from 0x0000 to 0x00FF.

The generic array logic (GAL) IC, GAL16V8, contains a logic network that takes as input the
configuration bit, the upper address bits A11 to A15, and a memory request control signal, and
produces the appropriate chip select outputs for the two different configurations. The extra space in the
GAL is also used for logic arrays to produce the Addr_0_or_1 and Addr_2_or_3 signals used in chip
control logic for the configuration flip-flop and the serial interface. If one were to implement these
logic networks as individual logic gates, it would look like this (from an earlier version of the computer
that used discrete logic ICs for the configuration logic):

17 The data in the OUT instruction is ignored, the execution of the instruction alone changes the configuration bit.

74

This would take 7 individual ICs. So, using the GAL saves space and expense.

The first, small logic circuit above has inputs A1, A2 and A3. One output of this circuit is the Addr 2 or
3 signal which is passed to the serial interface chip select logic as described in the serial interface
section above. The other output is Addr 0 or 1 (“address zero or one”) that is an input to the memory
configuration port circuit.

This logic circuit performs the following calculations (the Addr 0 or 1 and Addr 2 or 3 are active-high,
that is, are logical 1 or +5V when asserted):

• Assert Addr 0 or 1 if A1 and A2 and A3 are all zero.

• Assert Addr 2 or 3 if A1 = 1 and, A2 and A3 are zero.

The formal logic equations for these two outputs are:

• Addr 0 or 1 = ~A3 ~A2 ~A1

• Addr 2 or 3 = ~A3 ~A2 * A1

The configuration bit is an input to the other, larger logic circuit in the GAL, which also has inputs A11
to A15, and Mem_Req. The outputs of this logic circuit are the chip select (CS) signals for the ROM
and the two RAM ICs. The logic performs the following calculation (the CS signals are all active-low,
that is, are logical 0 or GND when asserted – the asterisks on the labels in the schematic were
unintentionally omitted):

• Assert CS_ROM if Configuration is 0, Mem_Req is asserted, and the address is 0x0000 to

75

0x07FF – that is, if A11 to A15 are all zero.

• Assert CS_RAM0 if Configuration is 0, Mem_Req is asserted, and the address is 0x0800 to
0x7FFF – that is, A15 is zero, and any of A11 to A14 is 1.

• Assert CS_RAM0 if Configuration is 1, Mem_Req is asserted, and the address is 0x0000 to
0x7FFF – that is, if A15 is zero

• Assert CS_RAM1 if Configuration is 0 or 1 (a “don't care”) and the address is 0x8000 to
0xFFFF – that is, A15 is one.

The formal logic equations are here:

• CS_ROM = ~Mem_Req + Config + A11 + A12 + A13 + A14 + A15

• CS_RAM0 = ~A14 ~A13 ~A12 ~A11 ~Config + ~Mem_Req + A15

• CS_RAM1 = ~A15 + ~Mem_Req

I used the Logisim program to help design these logic circuits, and the Galasm program to create the
fuse map file used to program the GAL16V8. Here is the Galasam PLD file:

GAL16V8 ; this is the GAL type

Memory Logic 1 ; this is the signature

CLK MemReq Config A11 A12 A13 A14 A15 A1 GND ;pin declaration

/OE CSROM CSRAM0 CSRAM1 Addr0or1 Addr2or3 A2 A3 A VCC

CSROM = /MemReq + Config + A11 + A12 + A13 + A14 + A15 ;pin definitions

CSRAM0 = /A14 * /A13 * /A12 * /A11 * /Config + /MemReq + A15

CSRAM1 = /A15 + /MemReq

Addr0or1 = /A3 * /A2 * /A1

Addr2or3 = /A3 * /A2 * A1

DESCRIPTION:

This is the memory select logic for the CPUville Single board computer, with the
addition of logic to produce the Add 0 or 1 and Add 2 or 3 outputs.

76

Connectors and miscellaneous circuit elements

The reset circuit pulls the Reset* signal low (asserted) when the button is pushed. The capacitor and
resistor on the inverter input provide about a second of delay after the button is released (or the
computer is powered on) for the Reset* signal to de-assert. The jumper allows one to use an external
reset circuit, with the Reset* signal coming from the system connector.

The oscillator provides a square-wave signal for both the CPU and UART clocks. The CPU clock can
be disabled by removing the clock jumper, and an external CPU clock can be used instead, with the
signal coming in from the system connector.

The barrel jack connects power from the power supply to the computer power traces. The power
indicator LED lights when power is present.

The auxiliary power connector (the two pins with a clip at the top of the circuit board) can be used,
with connecting wires, to supply power to a disk drive that requires only +5V. Drives can also receive
+5V from pin 20 of the PATA connector, as discussed in the section on Building the Computer. The
auxiliary power connector can also be used to connect a logic probe.

The system connector presents the Z80 pins in an accessible form so that a user could connect an
expansion board to the computer if desired. The connector outputs are unbuffered, and can only drive
one TTL input each. Unused CPU signals, such as NMI*, BusAck* and Halt*, are passed to the system
connector in case a user builds a peripheral that uses these controls. This connector can be used to

77

connect an 8-bit processor other than the Z80 to the system, such as the CPUville 8-bit processor. In
that case the Z80 should be removed from its socket before the other processor is connected.

The inverters (74LS04) create some inverted control signals for the various logic circuits.

78

Parts organizer

Capacitor, 22 uF, 16V

1

Resistor, 100K, ¼ watt
Brown-Black-Yellow

1

74LS00 quad NAND

1

74LS08 quad AND

1

74LS04 hex inverter

1

DIL 14-pin socket

6

Pushbutton

1

DIL 16-pin socket

2

DIL 24-pin socket

1

DIL 20-pin socket

1

32K RAM

2

2716 2K EPROM

1

74LS14 hex inverter,
Schmitt trigger

1

GAL 16V8 programmable
logic

1

74LS74 dual D flip-flop

1

8251A UART

1

Z80 CPU

1

Resistor, 470 ohm, ¼ watt
Yellow-Violet-Brown

2

Resistor, 1K, ¼ watt
Brown-Black-Red

4

Resistor network, 1K x 9

1

LED

2

Oscillator, 1.8432 MHz

1

2-pin header

2

Shorting block

2

79

Capacitor, 1 uF tantalum

10

Header with clip, 2 pin

1

Power-in jack

1

DIL 40-pin socket

1

DIL 28-pin socket, 0.6
inches wide

1

MAX232 line driver

2

40-pin shrouded header
(PATA/IDE disk connector)

1

40-pin header (system
connector)

1

DB-9 female connector for
RS-232 serial interface

1

DIL 28-pin socket, 0.3
inches wide

2

74LS92 divide-by-12

1

40-pin right-angle header
(alternative disk connector)

1

Standoff, 0.25 inch female

4

Standoff, 0.75 inch M/F

4

80

Parts list
I buy almost all my parts from Jameco. If you buy from a different supplier, you can check the
datasheets for these parts on the Jameco website by referring to the part number.

81

Part PCB Reference Number Jameco Part No.
Shorting block 2 22024
Osc 1.8432 MHz OSC1 1 27879
Z80 CPU1 1 35561
Socket, 40-pin, 0.6 1 41111
74LS00 U3 1 46252
74LS04 U1 1 46316
74LS08 U2 1 46375
74LS14 U14 1 46640
74LS74 U9 1 48004
74LS92 U10 1 48143
UART 8251A U11 1 52652
40-pin header P3 1 53532
40-pin right angle header P1 1 53605
Res net, 1K ohm x 9 RN1 1 97877
DB-9 connector J1 1 104952
Socket, 20-pin, 0.3 1 112248
Socket, 28-pin, 0.6 1 112272
Socket, 28-pin, 0.3 2 112299
Push button switch SW1 1 122973
Power-in jack U5 1 137673
Standoff 0.25 inch female 4 139193
Standoff 0.75 inch M/F 4 139222
Cap 1uF, tantalum C3 – C11 10 154860
40-pin header, shrouded P1 1 181105
Molex header P2 1 232266
32K RAM U6,U7 2 242376
2716 EPROM U4 1 308662
Socket, 24-pin, 0.6 1 683198
Resistor, 470 ohm R2,R3 2 690785
Resistor, 1K ohm R6,R7,R5,R4 4 690865
Resistor, 100K ohm R1 1 691340
MAX-232N driver U12,U13 2 698576
GAL 16V8-D U8 1 876539
Cap, 22 uF C1 1 1946295
LED (red) D1,D2 1 2081932
2-pin header JP2,JP1 2 2144884

Selected Program Listings

chr_echo
0000 ;Program to test serial port.
0000 ;Enter hex machine code with load command, or binary file with bload command.
0000 ;No port initialization commands
0000 ;When running, should echo typed characters to display.
0800 .org 0800h
0800 DB 03 echo_loop_1: in a,(3) ;get status
0802 E6 02 and 002h ;check RxRDY bit
0804 28 FA jr z,echo_loop_1 ;not ready, loop
0806 DB 02 in a,(2) ;get char
0808 47 ld b,a ;save received char in b reg
0809 DB 03 echo_loop_2: in a,(3) ;get status
080B E6 01 and 001h ;check TxRDY bit
080D 28 FA jr z,echo_loop_2 ;loop if not set
080F 78 ld a,b ;get char back
0810 D3 02 out (2),a ;send to output
0812 18 EC jr echo_loop_1 ;start over
0814 .end
tasm: Number of errors = 0

ROM monitor18

File 2K_ROM_8.asm
0000 ;ROM monitor for a system with serial interface and IDE disk and memory expansion board.
0000 ;Expansion board has 64K RAM -- computer board memory decoder disabled (J2 off).
0000 ;Expansion board uses ports 2 and 3 for the serial interface, and 8 to 15 for the disk
0000 ;Therefore the computer board I/O decoder is also disabled (J1 off)
0000 ;Output to port 0 will cause memory configuration flip-flop to activate 2K ROM 0000-07FF,
0000 ;with 62K RAM 0800-FFFF
0000 ;Output to port 1 will cause memory configuration flip-flop to activate all RAM 0000-FFFF

18 The RAM monitor program monitor.bin is identical to this ROM monitor, except it was assembled to target address 0xDC00, has a small code prefix to move the
code to this location after CP/M loads it at 0x0100, and responds to the cpm command with a CP/M warm start, not a cold start as does the ROM monitor.

82

0000 ;
0000 org 00000h
0000 c3 63 04 jp monitor_cold_start
0003 ;
0003 ;The following code is for a system with a serial port.
0003 ;Assumes the UART data port address is 02h and control/status address is 03h
0003 ;
0003 ;The subroutines for the serial port use these variables in RAM:
0003 current_location: equ 0xdb00 ;word variable in RAM
0003 line_count: equ 0xdb02 ;byte variable in RAM
0003 byte_count: equ 0xdb03 ;byte variable in RAM
0003 value_pointer: equ 0xdb04 ;word variable in RAM
0003 current_value: equ 0xdb06 ;word variable in RAM
0003 buffer: equ 0xdb08 ;buffer in RAM -- up to stack area
0003 ;Need to have stack in upper RAM, but not in area of CP/M or RAM monitor.
0003 ROM_monitor_stack: equ 0xdbff ;upper TPA in RAM, below RAM monitor
0003 ;
0003 ;Subroutine to initialize serial port UART
0003 ;Needs to be called only once after computer comes out of reset.
0003 ;If called while port is active will cause port to fail.
0003 ;16x = 9600 baud
0003 3e 4e initialize_port: ld a,04eh ;1 stop bit, no parity, 8-bit char, 16x baud
0005 d3 03 out (3),a ;write to control port
0007 3e 37 ld a,037h ;enable receive and transmit
0009 d3 03 out (3),a ;write to control port
000b c9 ret
000c ;
000c ;Puts a single char (byte value) on serial output
000c ;Call with char to send in A register. Uses B register
000c 47 write_char: ld b,a ;store char
000d db 03 write_char_loop: in a,(3) ;check if OK to send
000f e6 01 and 001h ;check TxRDY bit
0011 ca 0d 00 jp z,write_char_loop ;loop if not set
0014 78 ld a,b ;get char back
0015 d3 02 out (2),a ;send to output
0017 c9 ret ;returns with char in a
0018 ;
0018 ;Subroutine to write a zero-terminated string to serial output
0018 ;Pass address of string in HL register
0018 ;No error checking

83

0018 db 03 write_string: in a,(3) ;read status
001a e6 01 and 001h ;check TxRDY bit
001c ca 18 00 jp z,write_string ;loop if not set
001f 7e ld a,(hl) ;get char from string
0020 a7 and a ;check if 0
0021 c8 ret z ;yes, finished
0022 d3 02 out (2),a ;no, write char to output
0024 23 inc hl ;next char in string
0025 c3 18 00 jp write_string ;start over
0028 ;
0028 ;Binary loader. Receive a binary file, place in memory.
0028 ;Address of load passed in HL, length of load (= file length) in BC
0028 db 03 bload: in a,(3) ;get status
002a e6 02 and 002h ;check RxRDY bit
002c ca 28 00 jp z,bload ;not ready, loop
002f db 02 in a,(2)
0031 77 ld (hl),a
0032 23 inc hl
0033 0b dec bc ;byte counter
0034 78 ld a,b ;need to test BC this way because
0035 b1 or c ;dec rp instruction does not change flags
0036 c2 28 00 jp nz,bload
0039 c9 ret
003a ;
003a ;Binary dump to port. Send a stream of binary data from memory to serial output
003a ;Address of dump passed in HL, length of dump in BC
003a db 03 bdump: in a,(3) ;get status
003c e6 01 and 001h ;check TxRDY bit
003e ca 3a 00 jp z,bdump ;not ready, loop
0041 7e ld a,(hl)
0042 d3 02 out (2),a
0044 23 inc hl
0045 0b dec bc
0046 78 ld a,b ;need to test this way because
0047 b1 or c ;dec rp instruction does not change flags
0048 c2 3a 00 jp nz,bdump
004b c9 ret
004c ;
004c ;Subroutine to get a string from serial input, place in buffer.
004c ;Buffer address passed in HL reg.

84

004c ;Uses A,BC,DE,HL registers (including calls to other subroutines).
004c ;Line entry ends by hitting return key. Return char not included in string (replaced by zero).
004c ;Backspace editing OK. No error checking.
004c ;
004c 0e 00 get_line: ld c,000h ;line position
004e 7c ld a,h ;put original buffer address in de
004f 57 ld d,a ;after this don't need to preserve hl
0050 7d ld a,l ;subroutines called don't use de
0051 5f ld e,a
0052 db 03 get_line_next_char: in a,(3) ;get status
0054 e6 02 and 002h ;check RxRDY bit
0056 ca 52 00 jp z,get_line_next_char ;not ready, loop
0059 db 02 in a,(2) ;get char
005b fe 0d cp 00dh ;check if return
005d c8 ret z ;yes, normal exit
005e fe 7f cp 07fh ;check if backspace (VT102 keys)
0060 ca 74 00 jp z,get_line_backspace ;yes, jump to backspace routine
0063 fe 08 cp 008h ;check if backspace (ANSI keys)
0065 ca 74 00 jp z,get_line_backspace ;yes, jump to backspace
0068 cd 0c 00 call write_char ;put char on screen
006b 12 ld (de),a ;store char in buffer
006c 13 inc de ;point to next space in buffer
006d 0c inc c ;inc counter
006e 3e 00 ld a,000h
0070 12 ld (de),a ;leaves zero-terminated string in buffer
0071 c3 52 00 jp get_line_next_char
0074 79 get_line_backspace: ld a,c ;check current position in line
0075 fe 00 cp 000h ;at beginning of line?
0077 ca 52 00 jp z,get_line_next_char ;yes, ignore backspace, get next char
007a 1b dec de ;no, erase char from buffer
007b 0d dec c ;back up one
007c 3e 00 ld a,000h ;put zero in place of last char
007e 12 ld (de),a
007f 21 84 03 ld hl,erase_char_string ;ANSI seq. To delete one char from line
0082 cd 18 00 call write_string ;transmits seq. to BS and erase char
0085 c3 52 00 jp get_line_next_char
0088 ;
0088 ;Creates a two-char hex string from the byte value passed in register A
0088 ;Location to place string passed in HL
0088 ;String is zero-terminated, stored in 3 locations starting at HL

85

0088 ;Also uses registers b,d, and e
0088 47 byte_to_hex_string: ld b,a ;store original byte
0089 cb 3f srl a ;shift right 4 times, putting
008b cb 3f srl a ;high nybble in low-nybble spot
008d cb 3f srl a ;and zeros in high-nybble spot
008f cb 3f srl a
0091 16 00 ld d,000h ;prepare for 16-bit addition
0093 5f ld e,a ;de contains offset
0094 e5 push hl ;temporarily store string target address
0095 21 ee 00 ld hl,hex_char_table ;use char table to get high-nybble character
0098 19 add hl,de ;add offset to start of table
0099 7e ld a,(hl) ;get char
009a e1 pop hl ;get string target address
009b 77 ld (hl),a ;store first char of string
009c 23 inc hl ;point to next string target address
009d 78 ld a,b ;get original byte back from reg b
009e e6 0f and 00fh ;mask off high-nybble
00a0 5f ld e,a ;d still has 000h, now de has offset
00a1 e5 push hl ;temp store string target address
00a2 21 ee 00 ld hl,hex_char_table ;start of table
00a5 19 add hl,de ;add offset
00a6 7e ld a,(hl) ;get char
00a7 e1 pop hl ;get string target address
00a8 77 ld (hl),a ;store second char of string
00a9 23 inc hl ;point to third location
00aa 3e 00 ld a,000h ;zero to terminate string
00ac 77 ld (hl),a ;store the zero
00ad c9 ret ;done
00ae ;
00ae ;Converts a single ASCII hex char to a nybble value
00ae ;Pass char in reg A. Letter numerals must be upper case.
00ae ;Return nybble value in low-order reg A with zeros in high-order nybble if no error.
00ae ;Return 0ffh in reg A if error (char not a valid hex numeral).
00ae ;Also uses b, c, and hl registers.
00ae 21 ee 00 hex_char_to_nybble: ld hl,hex_char_table
00b1 06 0f ld b,00fh ;no. of valid characters in table - 1.
00b3 0e 00 ld c,000h ;will be nybble value
00b5 be hex_to_nybble_loop: cp (hl) ;character match here?
00b6 ca c2 00 jp z,hex_to_nybble_ok ;match found, exit
00b9 05 dec b ;no match, check if at end of table

86

00ba fa c4 00 jp m,hex_to_nybble_err ;table limit exceded, exit with error
00bd 0c inc c ;still inside table, continue search
00be 23 inc hl
00bf c3 b5 00 jp hex_to_nybble_loop
00c2 79 hex_to_nybble_ok: ld a,c ;put nybble value in a
00c3 c9 ret
00c4 3e ff hex_to_nybble_err: ld a,0ffh ;error value
00c6 c9 ret
00c7 ;
00c7 ;Converts a hex character pair to a byte value
00c7 ;Called with location of high-order char in HL
00c7 ;If no error carry flag clear, returns with byte value in register A, and
00c7 ;HL pointing to next mem location after char pair.
00c7 ;If error (non-hex char) carry flag set, HL pointing to invalid char
00c7 7e hex_to_byte: ld a,(hl) ;location of character pair
00c8 e5 push hl ;store hl (hex_char_to_nybble uses it)
00c9 cd ae 00 call hex_char_to_nybble
00cc e1 pop hl ;ret. with nybble in A reg, or 0ffh if error
00cd fe ff cp 0ffh ;non-hex character?
00cf ca ec 00 jp z,hex_to_byte_err ;yes, exit with error
00d2 cb 27 sla a ;no, move low order nybble to high side
00d4 cb 27 sla a
00d6 cb 27 sla a
00d8 cb 27 sla a
00da 57 ld d,a ;store high-nybble
00db 23 inc hl ;get next character of the pair
00dc 7e ld a,(hl)
00dd e5 push hl ;store hl
00de cd ae 00 call hex_char_to_nybble
00e1 e1 pop hl
00e2 fe ff cp 0ffh ;non-hex character?
00e4 ca ec 00 jp z,hex_to_byte_err ;yes, exit with error
00e7 b2 or d ;no, combine with high-nybble
00e8 23 inc hl ;point to next memory location after char pair
00e9 37 scf
00ea 3f ccf ;no-error exit (carry = 0)
00eb c9 ret
00ec 37 hex_to_byte_err: scf ;error, carry flag set
00ed c9 ret
00ee .. hex_char_table: defm "0123456789ABCDEF" ;ASCII hex table

87

00fe ;
00fe ;Subroutine to get a two-byte address from serial input.
00fe ;Returns with address value in HL
00fe ;Uses locations in RAM for buffer and variables
00fe 21 08 db address_entry: ld hl,buffer ;location for entered string
0101 cd 4c 00 call get_line ;returns with address string in buffer
0104 21 08 db ld hl,buffer ;location of stored address entry string
0107 cd c7 00 call hex_to_byte ;will get high-order byte first
010a da 20 01 jp c, address_entry_error ;if error, jump
010d 32 01 db ld (current_location+1),a ;store high-order byte, little-endian
0110 21 0a db ld hl,buffer+2 ;point to low-order hex char pair
0113 cd c7 00 call hex_to_byte ;get low-order byte
0116 da 20 01 jp c, address_entry_error ;jump if error
0119 32 00 db ld (current_location),a ;store low-order byte in lower memory
011c 2a 00 db ld hl,(current_location) ;put memory address in hl
011f c9 ret
0120 21 c2 03 address_entry_error: ld hl,address_error_msg
0123 cd 18 00 call write_string
0126 c3 fe 00 jp address_entry
0129 ;
0129 ;Subroutine to get a decimal string, return a word value
0129 ;Calls decimal_string_to_word subroutine
0129 21 08 db decimal_entry: ld hl,buffer
012c cd 4c 00 call get_line ;returns with DE pointing to terminating zero
012f 21 08 db ld hl,buffer
0132 cd 3f 01 call decimal_string_to_word
0135 d0 ret nc ;no error, return with word in hl
0136 21 36 04 ld hl,decimal_error_msg ;error, try again
0139 cd 18 00 call write_string
013c c3 29 01 jp decimal_entry
013f ;
013f ;Subroutine to convert a decimal string to a word value
013f ;Call with address of string in HL, pointer to end of string in DE
013f ;Carry flag set if error (non-decimal char)
013f ;Carry flag clear, word value in HL if no error.
013f 42 decimal_string_to_word: ld b,d
0140 4b ld c,e ;use BC as string pointer
0141 22 00 db ld (current_location),hl ;save addr. of buffer start in RAM
0144 21 00 00 ld hl,000h ;starting value zero
0147 22 06 db ld (current_value),hl

88

014a 21 8f 01 ld hl,decimal_place_value ;pointer to values
014d 22 04 db ld (value_pointer),hl
0150 0b decimal_next_char: dec bc ;next char (moving right to left)
0151 2a 00 db ld hl,(current_location) ;check if at end of decimal string
0154 37 scf ;get ready to sub. DE from buffer addr.
0155 3f ccf ;set carry to zero (clear)
0156 ed 42 sbc hl,bc ;cont. if bc > or = hl (buffer address)
0158 da 64 01 jp c,decimal_continue ;borrow means bc > hl
015b ca 64 01 jp z,decimal_continue ;z means bc = hl
015e 2a 06 db ld hl,(current_value) ;return if de < buffer add. (no borrow)
0161 37 scf ;get value back from RAM variable
0162 3f ccf
0163 c9 ret ;return with carry clear, value in hl
0164 0a decimal_continue: ld a,(bc) ;next char in string (right to left)
0165 d6 30 sub 030h ;ASCII value of zero char
0167 fa 8a 01 jp m,decimal_error ;error if char value less than 030h
016a fe 0a cp 00ah ;error if byte value > or = 10 decimal
016c f2 8a 01 jp p,decimal_error ;a reg now has value of decimal numeral
016f 2a 04 db ld hl,(value_pointer) ;get value to add an put in de
0172 5e ld e,(hl) ;little-endian (low byte in low memory)
0173 23 inc hl
0174 56 ld d,(hl)
0175 23 inc hl ;hl now points to next value
0176 22 04 db ld (value_pointer),hl
0179 2a 06 db ld hl,(current_value) ;get back current value
017c 3d decimal_add: dec a ;add loop to increase total value
017d fa 84 01 jp m,decimal_add_done ;end of multiplication
0180 19 add hl,de
0181 c3 7c 01 jp decimal_add
0184 22 06 db decimal_add_done: ld (current_value),hl
0187 c3 50 01 jp decimal_next_char
018a 37 decimal_error: scf
018b c9 ret
018c c3 7c 01 jp decimal_add
018f 01 00 0a 00 64 00 e8 03 10 27 decimal_place_value: defw 1,10,100,1000,10000
0199 ;
0199 ;Memory dump
0199 ;Displays a 256-byte block of memory in 16-byte rows.
0199 ;Called with address of start of block in HL
0199 22 00 db memory_dump: ld (current_location),hl ;store address of block to be displayed

89

019c 3e 00 ld a,000h
019e 32 03 db ld (byte_count),a ;initialize byte count
01a1 32 02 db ld (line_count),a ;initialize line count
01a4 c3 d9 01 jp dump_new_line
01a7 2a 00 db dump_next_byte: ld hl,(current_location) ;get byte address from storage,
01aa 7e ld a,(hl) ;get byte to be converted to string
01ab 23 inc hl ;increment address and
01ac 22 00 db ld (current_location),hl ;store back
01af 21 08 db ld hl,buffer ;location to store string
01b2 cd 88 00 call byte_to_hex_string ;convert
01b5 21 08 db ld hl,buffer ;display string
01b8 cd 18 00 call write_string
01bb 3a 03 db ld a,(byte_count) ;next byte
01be 3c inc a
01bf ca 09 02 jp z,dump_done ;stop when 256 bytes displayed
01c2 32 03 db ld (byte_count),a ;not finished yet, store
01c5 3a 02 db ld a,(line_count) ;end of line (16 characters)?
01c8 fe 0f cp 00fh ;yes, start new line
01ca ca d9 01 jp z,dump_new_line
01cd 3c inc a ;no, increment line count
01ce 32 02 db ld (line_count),a
01d1 3e 20 ld a,020h ;print space
01d3 cd 0c 00 call write_char
01d6 c3 a7 01 jp dump_next_byte ;continue
01d9 3e 00 dump_new_line: ld a,000h ;reset line count to zero
01db 32 02 db ld (line_count),a
01de cd 89 02 call write_newline
01e1 2a 00 db ld hl,(current_location) ;location of start of line
01e4 7c ld a,h ;high byte of address
01e5 21 08 db ld hl, buffer
01e8 cd 88 00 call byte_to_hex_string ;convert
01eb 21 08 db ld hl,buffer
01ee cd 18 00 call write_string ;write high byte
01f1 2a 00 db ld hl,(current_location)
01f4 7d ld a,l ;low byte of address
01f5 21 08 db ld hl, buffer
01f8 cd 88 00 call byte_to_hex_string ;convert
01fb 21 08 db ld hl,buffer
01fe cd 18 00 call write_string ;write low byte
0201 3e 20 ld a,020h ;space

90

0203 cd 0c 00 call write_char
0206 c3 a7 01 jp dump_next_byte ;now write 16 bytes
0209 3e 00 dump_done: ld a,000h
020b 21 08 db ld hl,buffer
020e 77 ld (hl),a ;clear buffer of last string
020f cd 89 02 call write_newline
0212 c9 ret
0213 ;
0213 ;Memory load
0213 ;Loads RAM memory with bytes entered as hex characters
0213 ;Called with address to start loading in HL
0213 ;Displays entered data in 16-byte rows.
0213 22 00 db memory_load: ld (current_location),hl
0216 21 ee 03 ld hl,data_entry_msg
0219 cd 18 00 call write_string
021c c3 66 02 jp load_new_line
021f cd 7f 02 load_next_char: call get_char
0222 fe 0d cp 00dh ;return?
0224 ca 7b 02 jp z,load_done ;yes, quit
0227 32 08 db ld (buffer),a
022a cd 7f 02 call get_char
022d fe 0d cp 00dh ;return?
022f ca 7b 02 jp z,load_done ;yes, quit
0232 32 09 db ld (buffer+1),a
0235 21 08 db ld hl,buffer
0238 cd c7 00 call hex_to_byte
023b da 71 02 jp c,load_data_entry_error ;non-hex character
023e 2a 00 db ld hl,(current_location) ;get byte address from storage,
0241 77 ld (hl),a ;store byte
0242 23 inc hl ;increment address and
0243 22 00 db ld (current_location),hl ;store back
0246 3a 08 db ld a,(buffer)
0249 cd 0c 00 call write_char
024c 3a 09 db ld a,(buffer+1)
024f cd 0c 00 call write_char
0252 3a 02 db ld a,(line_count) ;end of line (16 characters)?
0255 fe 0f cp 00fh ;yes, start new line
0257 ca 66 02 jp z,load_new_line
025a 3c inc a ;no, increment line count
025b 32 02 db ld (line_count),a

91

025e 3e 20 ld a,020h ;print space
0260 cd 0c 00 call write_char
0263 c3 1f 02 jp load_next_char ;continue
0266 3e 00 load_new_line: ld a,000h ;reset line count to zero
0268 32 02 db ld (line_count),a
026b cd 89 02 call write_newline
026e c3 1f 02 jp load_next_char ;continue
0271 cd 89 02 load_data_entry_error: call write_newline
0274 21 1b 04 ld hl,data_error_msg
0277 cd 18 00 call write_string
027a c9 ret
027b cd 89 02 load_done: call write_newline
027e c9 ret
027f ;
027f ;Get one ASCII character from the serial port.
027f ;Returns with char in A reg. No error checking.
027f db 03 get_char: in a,(3) ;get status
0281 e6 02 and 002h ;check RxRDY bit
0283 ca 7f 02 jp z,get_char ;not ready, loop
0286 db 02 in a,(2) ;get char
0288 c9 ret
0289 ;
0289 ;Subroutine to start a new line
0289 3e 0d write_newline: ld a,00dh ;ASCII carriage return character
028b cd 0c 00 call write_char
028e 3e 0a ld a,00ah ;new line (line feed) character
0290 cd 0c 00 call write_char
0293 c9 ret
0294 ;
0294 ;Subroutine to read one disk sector (256 bytes)
0294 ;Address to place data passed in HL
0294 ;LBA bits 0 to 7 passed in C, bits 8 to 15 passed in B
0294 ;LBA bits 16 to 23 passed in E
0294 disk_read:
0294 db 0f rd_status_loop_1: in a,(0fh) ;check status
0296 e6 80 and 80h ;check BSY bit
0298 c2 94 02 jp nz,rd_status_loop_1 ;loop until not busy
029b db 0f rd_status_loop_2: in a,(0fh) ;check status
029d e6 40 and 40h ;check DRDY bit
029f ca 9b 02 jp z,rd_status_loop_2 ;loop until ready

92

02a2 3e 01 ld a,01h ;number of sectors = 1
02a4 d3 0a out (0ah),a ;sector count register
02a6 79 ld a,c
02a7 d3 0b out (0bh),a ;lba bits 0 - 7
02a9 78 ld a,b
02aa d3 0c out (0ch),a ;lba bits 8 - 15
02ac 7b ld a,e
02ad d3 0d out (0dh),a ;lba bits 16 - 23
02af 3e e0 ld a,11100000b ;LBA mode, select drive 0
02b1 d3 0e out (0eh),a ;drive/head register
02b3 3e 20 ld a,20h ;Read sector command
02b5 d3 0f out (0fh),a
02b7 db 0f rd_wait_for_DRQ_set: in a,(0fh) ;read status
02b9 e6 08 and 08h ;DRQ bit
02bb ca b7 02 jp z,rd_wait_for_DRQ_set ;loop until bit set
02be db 0f rd_wait_for_BSY_clear: in a,(0fh)
02c0 e6 80 and 80h
02c2 c2 be 02 jp nz,rd_wait_for_BSY_clear
02c5 db 0f in a,(0fh) ;clear INTRQ
02c7 db 08 read_loop: in a,(08h) ;get data
02c9 77 ld (hl),a
02ca 23 inc hl
02cb db 0f in a,(0fh) ;check status
02cd e6 08 and 08h ;DRQ bit
02cf c2 c7 02 jp nz,read_loop ;loop until cleared
02d2 c9 ret
02d3 ;
02d3 ;Subroutine to write one disk sector (256 bytes)
02d3 ;Address of data to write to disk passed in HL
02d3 ;LBA bits 0 to 7 passed in C, bits 8 to 15 passed in B
02d3 ;LBA bits 16 to 23 passed in E
02d3 disk_write:
02d3 db 0f wr_status_loop_1: in a,(0fh) ;check status
02d5 e6 80 and 80h ;check BSY bit
02d7 c2 d3 02 jp nz,wr_status_loop_1 ;loop until not busy
02da db 0f wr_status_loop_2: in a,(0fh) ;check status
02dc e6 40 and 40h ;check DRDY bit
02de ca da 02 jp z,wr_status_loop_2 ;loop until ready
02e1 3e 01 ld a,01h ;number of sectors = 1
02e3 d3 0a out (0ah),a ;sector count register

93

02e5 79 ld a,c
02e6 d3 0b out (0bh),a ;lba bits 0 - 7
02e8 78 ld a,b
02e9 d3 0c out (0ch),a ;lba bits 8 - 15
02eb 7b ld a,e
02ec d3 0d out (0dh),a ;lba bits 16 - 23
02ee 3e e0 ld a,11100000b ;LBA mode, select drive 0
02f0 d3 0e out (0eh),a ;drive/head register
02f2 3e 30 ld a,30h ;Write sector command
02f4 d3 0f out (0fh),a
02f6 db 0f wr_wait_for_DRQ_set: in a,(0fh) ;read status
02f8 e6 08 and 08h ;DRQ bit
02fa ca f6 02 jp z,wr_wait_for_DRQ_set ;loop until bit set
02fd 7e write_loop: ld a,(hl)
02fe d3 08 out (08h),a ;write data
0300 23 inc hl
0301 db 0f in a,(0fh) ;read status
0303 e6 08 and 08h ;check DRQ bit
0305 c2 fd 02 jp nz,write_loop ;write until bit cleared
0308 db 0f wr_wait_for_BSY_clear: in a,(0fh)
030a e6 80 and 80h
030c c2 08 03 jp nz,wr_wait_for_BSY_clear
030f db 0f in a,(0fh) ;clear INTRQ
0311 c9 ret
0312 ;
0312 ;Strings used in subroutines
0312 .. 00 length_entry_string: defm "Enter length of file to load (decimal): ",0
033b .. 00 dump_entry_string: defm "Enter no. of bytes to dump (decimal): ",0
0362 .. 00 LBA_entry_string: defm "Enter LBA (decimal, 0 to 65535): ",0
0384 08 1b .. 00 erase_char_string: defm 008h,01bh,"[K",000h ;ANSI seq. for BS, erase to end of line.
0389 .. 00 address_entry_msg: defm "Enter 4-digit hex address (use upper-case A through F): ",0
03c2 .. 00 address_error_msg: defm "\r\nError: invalid hex character, try again: ",0
03ee .. 00 data_entry_msg: defm "Enter hex bytes, hit return when finished.\r\n",0
041b .. 00 data_error_msg: defm "Error: invalid hex byte.\r\n",0
0436 .. 00 decimal_error_msg: defm "\r\nError: invalid decimal number, try again: ",0
0463 ;
0463 ;Simple monitor program for CPUville Z80 computer with serial interface.
0463 31 ff db monitor_cold_start: ld sp,ROM_monitor_stack
0466 cd 03 00 call initialize_port
0469 21 dc 05 ld hl,monitor_message

94

046c cd 18 00 call write_string
046f cd 89 02 monitor_warm_start: call write_newline ;re-enter here to avoid port re-init.
0472 3e 3e ld a,03eh ;cursor symbol
0474 cd 0c 00 call write_char
0477 21 08 db ld hl,buffer
047a cd 4c 00 call get_line ;get monitor input string (command)
047d cd 89 02 call write_newline
0480 cd 84 04 call parse ;parse command, returns with jump add. in HL
0483 e9 jp (hl)
0484 ;
0484 ;Parses (interprets) an input line in buffer for commands as described in parse table.
0484 ;Returns with address of jump to action for the command in HL
0484 01 ba 07 parse: ld bc,parse_table ;bc is pointer to parse_table
0487 0a parse_start: ld a,(bc) ;get pointer to match string from parse table
0488 5f ld e,a
0489 03 inc bc
048a 0a ld a,(bc)
048b 57 ld d,a ;de will is pointer to strings for matching
048c 1a ld a,(de) ;get first char from match string
048d f6 00 or 000h ;zero?
048f ca aa 04 jp z,parser_exit ;yes, exit no_match
0492 21 08 db ld hl,buffer ;no, parse input string
0495 be match_loop: cp (hl) ;compare buffer char with match string char
0496 c2 a4 04 jp nz,no_match ;no match, go to next match string
0499 f6 00 or 000h ;end of strings (zero)?
049b ca aa 04 jp z,parser_exit ;yes, matching string found
049e 13 inc de ;match so far, point to next char in match
string
049f 1a ld a,(de) ;get next character from match string
04a0 23 inc hl ;and point to next char in input string
04a1 c3 95 04 jp match_loop ;check for match
04a4 03 no_match: inc bc ;skip over jump target to
04a5 03 inc bc
04a6 03 inc bc ;get address of next matching string
04a7 c3 87 04 jp parse_start
04aa 03 parser_exit: inc bc ;skip to address of jump for match
04ab 0a ld a,(bc)
04ac 6f ld l,a
04ad 03 inc bc
04ae 0a ld a,(bc)

95

04af 67 ld h,a ;returns with jump address in hl
04b0 c9 ret
04b1 ;
04b1 ;Actions to be taken on match
04b1 ;
04b1 ;Memory dump program
04b1 ;Input 4-digit hexadecimal address
04b1 ;Calls memory_dump subroutine
04b1 21 06 06 dump_jump: ld hl,dump_message ;Display greeting
04b4 cd 18 00 call write_string
04b7 21 89 03 ld hl,address_entry_msg ;get ready to get address
04ba cd 18 00 call write_string
04bd cd fe 00 call address_entry ;returns with address in HL
04c0 cd 89 02 call write_newline
04c3 cd 99 01 call memory_dump
04c6 c3 6f 04 jp monitor_warm_start
04c9 ;
04c9 ;Hex loader, displays formatted input
04c9 21 2d 06 load_jump: ld hl,load_message ;Display greeting
04cc cd 18 00 call write_string ;get address to load
04cf 21 89 03 ld hl,address_entry_msg ;get ready to get address
04d2 cd 18 00 call write_string
04d5 cd fe 00 call address_entry
04d8 cd 89 02 call write_newline
04db cd 13 02 call memory_load
04de c3 6f 04 jp monitor_warm_start
04e1 ;
04e1 ;Jump and run do the same thing: get an address and jump to it.
04e1 21 5c 06 run_jump: ld hl,run_message ;Display greeting
04e4 cd 18 00 call write_string
04e7 21 89 03 ld hl,address_entry_msg ;get ready to get address
04ea cd 18 00 call write_string
04ed cd fe 00 call address_entry
04f0 e9 jp (hl)
04f1 ;
04f1 ;Help and ? do the same thing, display the available commands
04f1 21 ee 05 help_jump: ld hl,help_message
04f4 cd 18 00 call write_string
04f7 01 ba 07 ld bc,parse_table ;table with pointers to command strings
04fa 0a help_loop: ld a,(bc) ;displays command strings

96

04fb 6f ld l,a ;getting the string addresses from the
04fc 03 inc bc ;parse table
04fd 0a ld a,(bc) ;pass add. of string to HL through A reg
04fe 67 ld h,a
04ff 7e ld a,(hl) ;hl now points to start of match string
0500 f6 00 or 000h ;exit if no_match string
0502 ca 15 05 jp z,help_done
0505 c5 push bc ;write_char uses B reg, so save first
0506 3e 20 ld a,020h ;space char
0508 cd 0c 00 call write_char
050b c1 pop bc
050c cd 18 00 call write_string ;writes match string
050f 03 inc bc ;pass over jump address in table
0510 03 inc bc
0511 03 inc bc
0512 c3 fa 04 jp help_loop
0515 c3 6f 04 help_done: jp monitor_warm_start
0518 ;
0518 ;Binary file load. Need both address to load and length of file
0518 21 91 06 bload_jump: ld hl,bload_message
051b cd 18 00 call write_string
051e 21 89 03 ld hl,address_entry_msg
0521 cd 18 00 call write_string
0524 cd fe 00 call address_entry
0527 cd 89 02 call write_newline
052a e5 push hl
052b 21 12 03 ld hl,length_entry_string
052e cd 18 00 call write_string
0531 cd 29 01 call decimal_entry
0534 44 ld b,h
0535 4d ld c,l
0536 21 b4 06 ld hl,bload_ready_message
0539 cd 18 00 call write_string
053c e1 pop hl
053d cd 28 00 call bload
0540 c3 6f 04 jp monitor_warm_start
0543 ;
0543 ;Binary memory dump. Need address of start of dump and no. bytes
0543 21 d8 06 bdump_jump: ld hl,bdump_message
0546 cd 18 00 call write_string

97

0549 21 89 03 ld hl,address_entry_msg
054c cd 18 00 call write_string
054f cd fe 00 call address_entry
0552 cd 89 02 call write_newline
0555 e5 push hl
0556 21 3b 03 ld hl,dump_entry_string
0559 cd 18 00 call write_string
055c cd 29 01 call decimal_entry
055f 44 ld b,h
0560 4d ld c,l
0561 21 08 07 ld hl,bdump_ready_message
0564 cd 18 00 call write_string
0567 cd 7f 02 call get_char
056a e1 pop hl
056b cd 3a 00 call bdump
056e c3 6f 04 jp monitor_warm_start
0571 ;Disk read. Need memory address to place data, LBA of sector to read
0571 21 2f 07 diskrd_jump: ld hl,diskrd_message
0574 cd 18 00 call write_string
0577 21 89 03 ld hl,address_entry_msg
057a cd 18 00 call write_string
057d cd fe 00 call address_entry
0580 cd 89 02 call write_newline
0583 e5 push hl
0584 21 62 03 ld hl,LBA_entry_string
0587 cd 18 00 call write_string
058a cd 29 01 call decimal_entry
058d 44 ld b,h
058e 4d ld c,l
058f 1e 00 ld e,00h
0591 e1 pop hl
0592 cd 94 02 call disk_read
0595 c3 6f 04 jp monitor_warm_start
0598 21 57 07 diskwr_jump: ld hl,diskwr_message
059b cd 18 00 call write_string
059e 21 89 03 ld hl,address_entry_msg
05a1 cd 18 00 call write_string
05a4 cd fe 00 call address_entry
05a7 cd 89 02 call write_newline
05aa e5 push hl

98

05ab 21 62 03 ld hl,LBA_entry_string
05ae cd 18 00 call write_string
05b1 cd 29 01 call decimal_entry
05b4 44 ld b,h
05b5 4d ld c,l
05b6 1e 00 ld e,00h
05b8 e1 pop hl
05b9 cd d3 02 call disk_write
05bc c3 6f 04 jp monitor_warm_start
05bf 21 00 08 cpm_jump: ld hl,0800h
05c2 01 00 00 ld bc,0000h
05c5 1e 00 ld e,00h
05c7 cd 94 02 call disk_read
05ca c3 00 08 jp 0800h
05cd ;Prints message for no match to entered command
05cd 21 eb 05 no_match_jump: ld hl,no_match_message
05d0 cd 18 00 call write_string
05d3 21 08 db ld hl, buffer
05d6 cd 18 00 call write_string
05d9 c3 6f 04 jp monitor_warm_start
05dc ;
05dc ;Monitor data structures:
05dc ;
05dc .. 00 monitor_message: defm "\r\nROM ver. 8\r\n",0
05eb .. 00 no_match_message: defm "? ",0
05ee .. 00 help_message: defm "Commands implemented:\r\n",0
0606 .. 00 dump_message: defm "Displays a 256-byte block of memory.\r\n",0
062d .. 00 load_message: defm "Enter hex bytes starting at memory location.\r\n",0
065c .. 00 run_message: defm "Will jump to (execute) program at address entered.\r\n",0
0691 .. 00 bload_message: defm "Loads a binary file into memory.\r\n",0
06b4 .. 00 bload_ready_message: defm "\n\rReady to receive, start transfer.",0
06d8 .. 00 bdump_message: defm "Dumps binary data from memory to serial port.\r\n",0
0708 .. 00 bdump_ready_message: defm "\n\rReady to send, hit any key to start.",0
072f .. 00 diskrd_message: defm "Reads one sector from disk to memory.\r\n",0
0757 .. 00 diskwr_message: defm "Writes one sector from memory to disk.\r\n",0
0780 ;Strings for matching:
0780 .. 00 dump_string: defm "dump",0
0785 .. 00 load_string: defm "load",0
078a .. 00 jump_string: defm "jump",0
078f .. 00 run_string: defm "run",0

99

0793 .. 00 question_string: defm "?",0
0795 .. 00 help_string: defm "help",0
079a .. 00 bload_string: defm "bload",0
07a0 .. 00 bdump_string: defm "bdump",0
07a6 .. 00 diskrd_string: defm "diskrd",0
07ad .. 00 diskwr_string: defm "diskwr",0
07b4 .. 00 cpm_string: defm "cpm",0
07b8 00 00 no_match_string: defm 0,0
07ba ;Table for matching strings to jumps
07ba 80 07 b1 04 85 07 c9 04 parse_table: defw dump_string,dump_jump,load_string,load_jump
07c2 8a 07 e1 04 8f 07 e1 04 defw jump_string,run_jump,run_string,run_jump
07ca 93 07 f1 04 95 07 f1 04 defw question_string,help_jump,help_string,help_jump
07d2 9a 07 18 05 a0 07 43 05 defw bload_string,bload_jump,bdump_string,bdump_jump
07da a6 07 71 05 ad 07 98 05 defw diskrd_string,diskrd_jump,diskwr_string,diskwr_jump
07e2 b4 07 bf 05 defw cpm_string,cpm_jump
07e6 b8 07 cd 05 defw no_match_string,no_match_jump
07ea
End of file 2K_ROM_8.asm
07ea

100

Customized BIOS

File z80_cbios.asm
0000 ; skeletal cbios for first level of CP/M 2.0 alteration
0000 ; Modified for CPUville Z80 computer with IDE disk interface
0000 ; Aug, 2014 by Donn Stewart
0000 ;
0000 ccp: equ 0E400h ;base of ccp
0000 bdos: equ 0EC06h ;bdos entry
0000 bios: equ 0FA00h ;base of bios
0000 cdisk: equ 0004h ;address of current disk number 0=a,... l5=p
0000 iobyte: equ 0003h ;intel i/o byte
0000 disks: equ 04h ;number of disks in the system
0000 ;
0000 org bios ;origin of this program
fa00 nsects: equ ($-ccp)/128 ;warm start sector count
fa00 ;
fa00 ; jump vector for individual subroutines
fa00 ;
fa00 c3 9c fa JP boot ;cold start
fa03 c3 a6 fa wboote: JP wboot ;warm start
fa06 c3 18 fb JP const ;console status
fa09 c3 25 fb JP conin ;console character in
fa0c c3 31 fb JP conout ;console character out
fa0f c3 3c fb JP list ;list character out
fa12 c3 40 fb JP punch ;punch character out
fa15 c3 42 fb JP reader ;reader character out
fa18 c3 47 fb JP home ;move head to home position
fa1b c3 4d fb JP seldsk ;select disk
fa1e c3 66 fb JP settrk ;set track number
fa21 c3 6b fb JP setsec ;set sector number
fa24 c3 77 fb JP setdma ;set dma address
fa27 c3 7d fb JP read ;read disk
fa2a c3 d7 fb JP write ;write disk
fa2d c3 3e fb JP listst ;return list status
fa30 c3 70 fb JP sectran ;sector translate
fa33 ;
fa33 ; fixed data tables for four-drive standard

101

fa33 ; ibm-compatible 8" disks
fa33 ; no translations
fa33 ;
fa33 ; disk Parameter header for disk 00
fa33 00 00 00 00 dpbase: defw 0000h, 0000h
fa37 00 00 00 00 defw 0000h, 0000h
fa3b 36 fc 8d fa defw dirbf, dpblk
fa3f 32 fd b6 fc defw chk00, all00
fa43 ; disk parameter header for disk 01
fa43 00 00 00 00 defw 0000h, 0000h
fa47 00 00 00 00 defw 0000h, 0000h
fa4b 36 fc 8d fa defw dirbf, dpblk
fa4f 42 fd d5 fc defw chk01, all01
fa53 ; disk parameter header for disk 02
fa53 00 00 00 00 defw 0000h, 0000h
fa57 00 00 00 00 defw 0000h, 0000h
fa5b 36 fc 8d fa defw dirbf, dpblk
fa5f 52 fd f4 fc defw chk02, all02
fa63 ; disk parameter header for disk 03
fa63 00 00 00 00 defw 0000h, 0000h
fa67 00 00 00 00 defw 0000h, 0000h
fa6b 36 fc 8d fa defw dirbf, dpblk
fa6f 62 fd 13 fd defw chk03, all03
fa73 ;
fa73 ; sector translate vector
fa73 01 07 0d 13 trans: defm 1, 7, 13, 19 ;sectors 1, 2, 3, 4
fa77 19 05 0b 11 defm 25, 5, 11, 17 ;sectors 5, 6, 7, 6
fa7b 17 03 09 0f defm 23, 3, 9, 15 ;sectors 9, 10, 11, 12
fa7f 15 02 08 0e defm 21, 2, 8, 14 ;sectors 13, 14, 15, 16
fa83 14 1a 06 0c defm 20, 26, 6, 12 ;sectors 17, 18, 19, 20
fa87 12 18 04 0a defm 18, 24, 4, 10 ;sectors 21, 22, 23, 24
fa8b 10 16 defm 16, 22 ;sectors 25, 26
fa8d ;
fa8d dpblk: ;disk parameter block for all disks.
fa8d 1a 00 defw 26 ;sectors per track
fa8f 03 defm 3 ;block shift factor
fa90 07 defm 7 ;block mask
fa91 00 defm 0 ;null mask
fa92 f2 00 defw 242 ;disk size-1
fa94 3f 00 defw 63 ;directory max

102

fa96 c0 defm 192 ;alloc 0
fa97 00 defm 0 ;alloc 1
fa98 00 00 defw 0 ;check size
fa9a 02 00 defw 2 ;track offset
fa9c ;
fa9c ; end of fixed tables
fa9c ;
fa9c ; individual subroutines to perform each function
fa9c boot: ;simplest case is to just perform parameter initialization
fa9c af XOR a ;zero in the accum
fa9d 32 03 00 LD (iobyte),A ;clear the iobyte
faa0 32 04 00 LD (cdisk),A ;select disk zero
faa3 c3 ef fa JP gocpm ;initialize and go to cp/m
faa6 ;
faa6 wboot: ;simplest case is to read the disk until all sectors loaded
faa6 31 80 00 LD sp, 80h ;use space below buffer for stack
faa9 0e 00 LD c, 0 ;select disk 0
faab cd 4d fb call seldsk
faae cd 47 fb call home ;go to track 00
fab1 ;
fab1 06 2c LD b, nsects ;b counts * of sectors to load
fab3 0e 00 LD c, 0 ;c has the current track number
fab5 16 02 LD d, 2 ;d has the next sector to read
fab7 ; note that we begin by reading track 0, sector 2 since sector 1
fab7 ; contains the cold start loader, which is skipped in a warm start
fab7 21 00 e4 LD HL, ccp ;base of cp/m (initial load point)
faba load1: ;load one more sector
faba c5 PUSH BC ;save sector count, current track
fabb d5 PUSH DE ;save next sector to read
fabc e5 PUSH HL ;save dma address
fabd 4a LD c, d ;get sector address to register C
fabe cd 6b fb call setsec ;set sector address from register C
fac1 c1 pop BC ;recall dma address to b, C
fac2 c5 PUSH BC ;replace on stack for later recall
fac3 cd 77 fb call setdma ;set dma address from b, C
fac6 ;
fac6 ; drive set to 0, track set, sector set, dma address set
fac6 cd 7d fb call read
fac9 fe 00 CP 00h ;any errors?
facb c2 a6 fa JP NZ,wboot ;retry the entire boot if an error occurs

103

face ;
face ; no error, move to next sector
face e1 pop HL ;recall dma address
facf 11 80 00 LD DE, 128 ;dma=dma+128
fad2 19 ADD HL,DE ;new dma address is in h, l
fad3 d1 pop DE ;recall sector address
fad4 c1 pop BC ;recall number of sectors remaining, and current trk
fad5 05 DEC b ;sectors=sectors-1
fad6 ca ef fa JP Z,gocpm ;transfer to cp/m if all have been loaded
fad9 ;
fad9 ; more sectors remain to load, check for track change
fad9 14 INC d
fada 7a LD a,d ;sector=27?, if so, change tracks
fadb fe 1b CP 27
fadd da ba fa JP C,load1 ;carry generated if sector<27
fae0 ;
fae0 ; end of current track, go to next track
fae0 16 01 LD d, 1 ;begin with first sector of next track
fae2 0c INC c ;track=track+1
fae3 ;
fae3 ; save register state, and change tracks
fae3 c5 PUSH BC
fae4 d5 PUSH DE
fae5 e5 PUSH HL
fae6 cd 66 fb call settrk ;track address set from register c
fae9 e1 pop HL
faea d1 pop DE
faeb c1 pop BC
faec c3 ba fa JP load1 ;for another sector
faef ;
faef ; end of load operation, set parameters and go to cp/m
faef gocpm:
faef 3e c3 LD a, 0c3h ;c3 is a jmp instruction
faf1 32 00 00 LD (0),A ;for jmp to wboot
faf4 21 03 fa LD HL, wboote ;wboot entry point
faf7 22 01 00 LD (1),HL ;set address field for jmp at 0
fafa ;
fafa 32 05 00 LD (5),A ;for jmp to bdos
fafd 21 06 ec LD HL, bdos ;bdos entry point
fb00 22 06 00 LD (6),HL ;address field of Jump at 5 to bdos

104

fb03 ;
fb03 01 80 00 LD BC, 80h ;default dma address is 80h
fb06 cd 77 fb call setdma
fb09 ;
fb09 fb ei ;enable the interrupt system
fb0a 3a 04 00 LD A,(cdisk) ;get current disk number
fb0d fe 04 cp disks ;see if valid disk number
fb0f da 14 fb jp c,diskok ;disk valid, go to ccp
fb12 3e 00 ld a,0 ;invalid disk, change to disk 0
fb14 4f diskok: LD c, a ;send to the ccp
fb15 c3 00 e4 JP ccp ;go to cp/m for further processing
fb18 ;
fb18 ;
fb18 ; simple i/o handlers (must be filled in by user)
fb18 ; in each case, the entry point is provided, with space reserved
fb18 ; to insert your own code
fb18 ;
fb18 const: ;console status, return 0ffh if character ready, 00h if not
fb18 db 03 in a,(3) ;get status
fb1a e6 02 and 002h ;check RxRDY bit
fb1c ca 22 fb jp z,no_char
fb1f 3e ff ld a,0ffh ;char ready
fb21 c9 ret
fb22 3e 00 no_char: ld a,00h ;no char
fb24 c9 ret
fb25 ;
fb25 conin: ;console character into register a
fb25 db 03 in a,(3) ;get status
fb27 e6 02 and 002h ;check RxRDY bit
fb29 ca 25 fb jp z,conin ;loop until char ready
fb2c db 02 in a,(2) ;get char
fb2e e6 7f AND 7fh ;strip parity bit
fb30 c9 ret
fb31 ;
fb31 conout: ;console character output from register c
fb31 db 03 in a,(3)
fb33 e6 01 and 001h ;check TxRDY bit
fb35 ca 31 fb jp z,conout ;loop until port ready
fb38 79 ld a,c ;get the char
fb39 d3 02 out (2),a ;out to port

105

fb3b c9 ret
fb3c ;
fb3c list: ;list character from register c
fb3c 79 LD a, c ;character to register a
fb3d c9 ret ;null subroutine
fb3e ;
fb3e listst: ;return list status (0 if not ready, 1 if ready)
fb3e af XOR a ;0 is always ok to return
fb3f c9 ret
fb40 ;
fb40 punch: ;punch character from register C
fb40 79 LD a, c ;character to register a
fb41 c9 ret ;null subroutine
fb42 ;
fb42 ;
fb42 reader: ;reader character into register a from reader device
fb42 3e 1a LD a, 1ah ;enter end of file for now (replace later)
fb44 e6 7f AND 7fh ;remember to strip parity bit
fb46 c9 ret
fb47 ;
fb47 ;
fb47 ; i/o drivers for the disk follow
fb47 ; for now, we will simply store the parameters away for use
fb47 ; in the read and write subroutines
fb47 ;
fb47 home: ;move to the track 00 position of current drive
fb47 ; translate this call into a settrk call with Parameter 00
fb47 0e 00 LD c, 0 ;select track 0
fb49 cd 66 fb call settrk
fb4c c9 ret ;we will move to 00 on first read/write
fb4d ;
fb4d seldsk: ;select disk given by register c
fb4d 21 00 00 LD HL, 0000h ;error return code
fb50 79 LD a, c
fb51 32 35 fc LD (diskno),A
fb54 fe 04 CP disks ;must be between 0 and 3
fb56 d0 RET NC ;no carry if 4, 5,...
fb57 ; disk number is in the proper range
fb57 ; defs 10 ;space for disk select
fb57 ; compute proper disk Parameter header address

106

fb57 3a 35 fc LD A,(diskno)
fb5a 6f LD l, a ;l=disk number 0, 1, 2, 3
fb5b 26 00 LD h, 0 ;high order zero
fb5d 29 ADD HL,HL ;*2
fb5e 29 ADD HL,HL ;*4
fb5f 29 ADD HL,HL ;*8
fb60 29 ADD HL,HL ;*16 (size of each header)
fb61 11 33 fa LD DE, dpbase
fb64 19 ADD HL,DE ;hl=,dpbase (diskno*16) Note typo here in original source.
fb65 c9 ret
fb66 ;
fb66 settrk: ;set track given by register c
fb66 79 LD a, c
fb67 32 2f fc LD (track),A
fb6a c9 ret
fb6b ;
fb6b setsec: ;set sector given by register c
fb6b 79 LD a, c
fb6c 32 31 fc LD (sector),A
fb6f c9 ret
fb70 ;
fb70 ;
fb70 sectran:
fb70 ;translate the sector given by bc using the
fb70 ;translate table given by de
fb70 eb EX DE,HL ;hl=.trans
fb71 09 ADD HL,BC ;hl=.trans (sector)
fb72 c9 ret ;debug no translation
fb73 6e LD l, (hl) ;l=trans (sector)
fb74 26 00 LD h, 0 ;hl=trans (sector)
fb76 c9 ret ;with value in hl
fb77 ;
fb77 setdma: ;set dma address given by registers b and c
fb77 69 LD l, c ;low order address
fb78 60 LD h, b ;high order address
fb79 22 33 fc LD (dmaad),HL ;save the address
fb7c c9 ret
fb7d ;
fb7d read:
fb7d ;Read one CP/M sector from disk.

107

fb7d ;Return a 00h in register a if the operation completes properly, and 0lh if an error occurs
during the read.
fb7d ;Disk number in 'diskno'
fb7d ;Track number in 'track'
fb7d ;Sector number in 'sector'
fb7d ;Dma address in 'dmaad' (0-65535)
fb7d ;
fb7d 21 72 fd ld hl,hstbuf ;buffer to place disk sector (256 bytes)
fb80 db 0f rd_status_loop_1: in a,(0fh) ;check status
fb82 e6 80 and 80h ;check BSY bit
fb84 c2 80 fb jp nz,rd_status_loop_1 ;loop until not busy
fb87 db 0f rd_status_loop_2: in a,(0fh) ;check status
fb89 e6 40 and 40h ;check DRDY bit
fb8b ca 87 fb jp z,rd_status_loop_2 ;loop until ready
fb8e 3e 01 ld a,01h ;number of sectors = 1
fb90 d3 0a out (0ah),a ;sector count register
fb92 3a 31 fc ld a,(sector) ;sector
fb95 d3 0b out (0bh),a ;lba bits 0 - 7
fb97 3a 2f fc ld a,(track) ;track
fb9a d3 0c out (0ch),a ;lba bits 8 - 15
fb9c 3a 35 fc ld a,(diskno) ;disk (only bits
fb9f d3 0d out (0dh),a ;lba bits 16 - 23
fba1 3e e0 ld a,11100000b ;LBA mode, select host drive 0
fba3 d3 0e out (0eh),a ;drive/head register
fba5 3e 20 ld a,20h ;Read sector command
fba7 d3 0f out (0fh),a
fba9 db 0f rd_wait_for_DRQ_set: in a,(0fh) ;read status
fbab e6 08 and 08h ;DRQ bit
fbad ca a9 fb jp z,rd_wait_for_DRQ_set ;loop until bit set
fbb0 db 0f rd_wait_for_BSY_clear: in a,(0fh)
fbb2 e6 80 and 80h
fbb4 c2 b0 fb jp nz,rd_wait_for_BSY_clear
fbb7 db 0f in a,(0fh) ;clear INTRQ
fbb9 db 08 read_loop: in a,(08h) ;get data
fbbb 77 ld (hl),a
fbbc 23 inc hl
fbbd db 0f in a,(0fh) ;check status
fbbf e6 08 and 08h ;DRQ bit
fbc1 c2 b9 fb jp nz,read_loop ;loop until clear
fbc4 2a 33 fc ld hl,(dmaad) ;memory location to place data read from

108

disk
fbc7 11 72 fd ld de,hstbuf ;host buffer
fbca 06 80 ld b,128 ;size of CP/M sector
fbcc 1a rd_sector_loop: ld a,(de) ;get byte from host buffer
fbcd 77 ld (hl),a ;put in memory
fbce 23 inc hl
fbcf 13 inc de
fbd0 10 fa djnz rd_sector_loop ;put 128 bytes into memory
fbd2 db 0f in a,(0fh) ;get status
fbd4 e6 01 and 01h ;error bit
fbd6 c9 ret
fbd7
fbd7 write:
fbd7 ;Write one CP/M sector to disk.
fbd7 ;Return a 00h in register a if the operation completes properly, and 0lh if an error occurs
during the read or write
fbd7 ;Disk number in 'diskno'
fbd7 ;Track number in 'track'
fbd7 ;Sector number in 'sector'
fbd7 ;Dma address in 'dmaad' (0-65535)
fbd7 2a 33 fc ld hl,(dmaad) ;memory location of data to write
fbda 11 72 fd ld de,hstbuf ;host buffer
fbdd 06 80 ld b,128 ;size of CP/M sector
fbdf 7e wr_sector_loop: ld a,(hl) ;get byte from memory
fbe0 12 ld (de),a ;put in host buffer
fbe1 23 inc hl
fbe2 13 inc de
fbe3 10 fa djnz wr_sector_loop ;put 128 bytes in host buffer
fbe5 21 72 fd ld hl,hstbuf ;location of data to write to disk
fbe8 db 0f wr_status_loop_1: in a,(0fh) ;check status
fbea e6 80 and 80h ;check BSY bit
fbec c2 e8 fb jp nz,wr_status_loop_1 ;loop until not busy
fbef db 0f wr_status_loop_2: in a,(0fh) ;check status
fbf1 e6 40 and 40h ;check DRDY bit
fbf3 ca ef fb jp z,wr_status_loop_2 ;loop until ready
fbf6 3e 01 ld a,01h ;number of sectors = 1
fbf8 d3 0a out (0ah),a ;sector count register
fbfa 3a 31 fc ld a,(sector)
fbfd d3 0b out (0bh),a ;lba bits 0 - 7 = "sector"
fbff 3a 2f fc ld a,(track)

109

fc02 d3 0c out (0ch),a ;lba bits 8 - 15 = "track"
fc04 3a 35 fc ld a,(diskno)
fc07 d3 0d out (0dh),a ;lba bits 16 to 20 used for "disk"
fc09 3e e0 ld a,11100000b ;LBA mode, select drive 0
fc0b d3 0e out (0eh),a ;drive/head register
fc0d 3e 30 ld a,30h ;Write sector command
fc0f d3 0f out (0fh),a
fc11 db 0f wr_wait_for_DRQ_set: in a,(0fh) ;read status
fc13 e6 08 and 08h ;DRQ bit
fc15 ca 11 fc jp z,wr_wait_for_DRQ_set ;loop until bit set
fc18 7e write_loop: ld a,(hl)
fc19 d3 08 out (08h),a ;write data
fc1b 23 inc hl
fc1c db 0f in a,(0fh) ;read status
fc1e e6 08 and 08h ;check DRQ bit
fc20 c2 18 fc jp nz,write_loop ;write until bit cleared
fc23 db 0f wr_wait_for_BSY_clear: in a,(0fh)
fc25 e6 80 and 80h
fc27 c2 23 fc jp nz,wr_wait_for_BSY_clear
fc2a db 0f in a,(0fh) ;clear INTRQ
fc2c e6 01 and 01h ;check for error
fc2e c9 ret
fc2f ;
fc2f ; the remainder of the cbios is reserved uninitialized
fc2f ; data area, and does not need to be a Part of the
fc2f ; system memory image (the space must be available,
fc2f ; however, between"begdat" and"enddat").
fc2f ;
fc2f 00... track: defs 2 ;two bytes for expansion
fc31 00... sector: defs 2 ;two bytes for expansion
fc33 00... dmaad: defs 2 ;direct memory address
fc35 00... diskno: defs 1 ;disk number 0-15
fc36 ;
fc36 ; scratch ram area for bdos use
fc36 begdat: equ $;beginning of data area
fc36 00... dirbf: defs 128 ;scratch directory area
fcb6 00... all00: defs 31 ;allocation vector 0
fcd5 00... all01: defs 31 ;allocation vector 1
fcf4 00... all02: defs 31 ;allocation vector 2
fd13 00... all03: defs 31 ;allocation vector 3

110

fd32 00... chk00: defs 16 ;check vector 0
fd42 00... chk01: defs 16 ;check vector 1
fd52 00... chk02: defs 16 ;check vector 2
fd62 00... chk03: defs 16 ;check vector 3
fd72 ;
fd72 enddat: equ $;end of data area
fd72 datsiz: equ $-begdat; ;size of data area
fd72 00... hstbuf: ds 256 ;buffer for host disk sector
fe72 end
End of file z80_cbios.asm
fe72

Format
File format.asm
0000 ;Formats four classical CP/M disks
0000 ;Writes E5h to 26 sectors on tracks 2 to 77 of each disk.
0000 ;Uses calls to cbios, in memory at FA00h
0000 seldsk: equ 0fa1bh ;pass disk no. in c
0000 setdma: equ 0fa24h ;pass address in bc
0000 settrk: equ 0fa1eh ;pass track in reg C
0000 setsec: equ 0fa21h ;pass sector in reg c
0000 write: equ 0fa2ah ;write one CP/M sector to disk
0000 monitor_warm_start: equ 046fh
0000 org 0800h
0800 31 09 09 ld sp,format_stack
0803 3e 00 ld a,00h ;starting disk
0805 32 64 08 ld (disk),a
0808 4f disk_loop: ld c,a ;CP/M disk a
0809 cd 1b fa call seldsk
080c 3e 02 ld a,2 ;starting track (offset = 2)
080e 32 66 08 ld (track),a
0811 3e 00 track_loop: ld a,0 ;starting sector
0813 32 65 08 ld (sector),a
0816 21 69 08 ld hl,directory_sector ;address of data to write
0819 22 67 08 ld (address),hl
081c 3a 66 08 ld a,(track)
081f 4f ld c,a ;CP/M track
0820 cd 1e fa call settrk
0823 3a 65 08 sector_loop: ld a,(sector)

111

0826 4f ld c,a ;CP/M sector
0827 cd 21 fa call setsec
082a ed 4b 67 08 ld bc,(address) ;memory location
082e cd 24 fa call setdma
0831 cd 2a fa call write
0834 3a 65 08 ld a,(sector)
0837 fe 1a cp 26
0839 ca 43 08 jp z,next_track
083c 3c inc a
083d 32 65 08 ld (sector),a
0840 c3 23 08 jp sector_loop
0843 3a 66 08 next_track: ld a,(track)
0846 fe 4d cp 77
0848 ca 52 08 jp z,next_disk
084b 3c inc a
084c 32 66 08 ld (track),a
084f c3 11 08 jp track_loop
0852 3a 64 08 next_disk: ld a,(disk)
0855 3c inc a
0856 fe 04 cp 4
0858 ca 61 08 jp z,done
085b 32 64 08 ld (disk),a
085e c3 08 08 jp disk_loop
0861 c3 6f 04 done: jp monitor_warm_start
0864 00 disk: db 00h
0865 00 sector: db 00h
0866 00 track: db 00h
0867 00 00 address: dw 0000h
0869 directory_sector:
0869 0xe5... ds 128,0e5h ;byte for empty directory
08e9 00... ds 32 ;stack space
0909 format_stack:
0909 end
End of file format.asm
0909

Putsys

File putsys.asm

112

0000 ;Copies the memory image of CP/M loaded at E400h onto tracks 0 and 1 of the first CP/M disk
0000 ;Load and run from ROM monitor
0000 ;Uses calls to cbios, in memory at FA00h
0000 ;Writes track 0, sectors 2 to 26, then track 1, sectors 1 to 25
0000 seldsk: equ 0fa1bh ;pass disk no. in c
0000 setdma: equ 0fa24h ;pass address in bc
0000 settrk: equ 0fa1eh ;pass track in reg C
0000 setsec: equ 0fa21h ;pass sector in reg c
0000 write: equ 0fa2ah ;write one CP/M sector to disk
0000 monitor_warm_start: equ 046Fh ;Return to ROM monitor
0000 org 0800h
0800 0e 00 ld c,00h ;CP/M disk a
0802 cd 1b fa call seldsk
0805 ;Write track 0, sectors 2 to 26
0805 3e 02 ld a,2 ;starting sector
0807 32 80 08 ld (sector),a
080a 21 00 e4 ld hl,0E400h ;memory address to start
080d 22 81 08 ld (address),hl
0810 0e 00 ld c,0 ;CP/M track
0812 cd 1e fa call settrk
0815 3a 80 08 wr_trk_0_loop: ld a,(sector)
0818 4f ld c,a ;CP/M sector
0819 cd 21 fa call setsec
081c ed 4b 81 08 ld bc,(address) ;memory location
0820 cd 24 fa call setdma
0823 cd 2a fa call write
0826 3a 80 08 ld a,(sector)
0829 fe 1a cp 26
082b ca 3f 08 jp z,wr_trk_1
082e 3c inc a
082f 32 80 08 ld (sector),a
0832 2a 81 08 ld hl,(address)
0835 11 80 00 ld de,128
0838 19 add hl,de
0839 22 81 08 ld (address),hl
083c c3 15 08 jp wr_trk_0_loop
083f ;Write track 1, sectors 1 to 25
083f 0e 01 wr_trk_1: ld c,1
0841 cd 1e fa call settrk
0844 2a 81 08 ld hl,(address)

113

0847 11 80 00 ld de,128
084a 19 add hl,de
084b 22 81 08 ld (address),hl
084e 3e 01 ld a,1
0850 32 80 08 ld (sector),a
0853 3a 80 08 wr_trk_1_loop: ld a,(sector)
0856 4f ld c,a ;CP/M sector
0857 cd 21 fa call setsec
085a ed 4b 81 08 ld bc,(address) ;memory location
085e cd 24 fa call setdma
0861 cd 2a fa call write
0864 3a 80 08 ld a,(sector)
0867 fe 19 cp 25
0869 ca 7d 08 jp z,done
086c 3c inc a
086d 32 80 08 ld (sector),a
0870 2a 81 08 ld hl,(address)
0873 11 80 00 ld de,128
0876 19 add hl,de
0877 22 81 08 ld (address),hl
087a c3 53 08 jp wr_trk_1_loop
087d c3 6f 04 done: jp monitor_warm_start
0880 00 sector: db 00h
0881 00 00 address: dw 0000h
0883 end

End of file putsys.asm
0883

CP/M loader
File cpm_loader.asm
0000 ;Retrieves CP/M from disk and loads it in memory starting at E400h
0000 ;Uses calls to ROM routine for disk read.
0000 ;Reads track 0, sectors 2 to 26, then track 1, sectors 1 to 25
0000 ;This program is loaded into LBA sector 0 of disk, read to loc. 0800h by ROM and executed.
0000 hstbuf: equ 0900h ;will put 256-byte raw sector here
0000 disk_read: equ 0294h ;in 2K ROM
0000 cpm: equ 0FA00h ;CP/M cold start entry
0000 org 0800h

114

0800 ;Read track 0, sectors 2 to 26
0800 3e 02 ld a,2 ;starting sector
0802 32 84 08 ld (sector),a
0805 21 00 e4 ld hl,0E400h ;memory address to start
0808 22 86 08 ld (dmaad),hl
080b 3e 00 ld a,0 ;CP/M track
080d 32 85 08 ld (track),a
0810 cd 61 08 rd_trk_0_loop: call read
0813 3a 84 08 ld a,(sector)
0816 fe 1a cp 26
0818 ca 2c 08 jp z,rd_trk_1
081b 3c inc a
081c 32 84 08 ld (sector),a
081f 2a 86 08 ld hl,(dmaad)
0822 11 80 00 ld de,128
0825 19 add hl,de
0826 22 86 08 ld (dmaad),hl
0829 c3 10 08 jp rd_trk_0_loop
082c ;Read track 1, sectors 1 to 25
082c 3e 01 rd_trk_1: ld a,1
082e 32 85 08 ld (track),a
0831 2a 86 08 ld hl,(dmaad)
0834 11 80 00 ld de,128
0837 19 add hl,de
0838 22 86 08 ld (dmaad),hl
083b 3e 01 ld a,1 ;starting sector
083d 32 84 08 ld (sector),a
0840 cd 61 08 rd_trk_1_loop: call read
0843 3a 84 08 ld a,(sector)
0846 fe 19 cp 25
0848 ca 5c 08 jp z,done
084b 3c inc a
084c 32 84 08 ld (sector),a
084f 2a 86 08 ld hl,(dmaad)
0852 11 80 00 ld de,128
0855 19 add hl,de
0856 22 86 08 ld (dmaad),hl
0859 c3 40 08 jp rd_trk_1_loop
085c d3 01 done: out (1),a ;switch memory config to all-RAM
085e c3 00 fa jp cpm

115

0861
0861 read:
0861 ;Read one CP/M sector from disk 0
0861 ;Track number in 'track'
0861 ;Sector number in 'sector'
0861 ;Dma address (location in memory to place the CP/M sector) in 'dmaad' (0-65535)
0861 ;
0861 21 00 09 ld hl,hstbuf ;buffer to place raw disk sector (256 bytes)
0864 3a 84 08 ld a,(sector)
0867 4f ld c,a ;LBA bits 0 to 7
0868 3a 85 08 ld a,(track)
086b 47 ld b,a ;LBA bits 8 to 15
086c 1e 00 ld e,00h ;LBA bits 16 to 23
086e cd 94 02 call disk_read ;subroutine in ROM
0871 ;Transfer top 128-bytes out of buffer to memory
0871 2a 86 08 ld hl,(dmaad) ;memory location to place data read from disk
0874 11 00 09 ld de,hstbuf ;host buffer
0877 06 80 ld b,128 ;size of CP/M sector
0879 1a rd_sector_loop: ld a,(de) ;get byte from host buffer
087a 77 ld (hl),a ;put in memory
087b 23 inc hl
087c 13 inc de
087d 10 fa djnz rd_sector_loop ;put 128 bytes into memory
087f db 0f in a,(0fh) ;get status
0881 e6 01 and 01h ;error bit
0883 c9 ret
0884 00 sector: db 00h
0885 00 track: db 00h
0886 00 00 dmaad: dw 0000h
0888 end

End of file cpm_loader.asm
0888

116

Table of Tested Disk Drives
Drive Year of manufacture Size Passed diskrd/diskwr test CP/M installed

successfully

Mechanical Hard Disk Drives

Seagate ST3290A 261.3 Mb Yes Yes, but gave bad sector
errors

Western Digital Caviar
32500

1996 2559.8 Mb No Not attempted

Seagate Medalist 4321 1999 4.3 Gb No Not attempted

Seagate Medalist 4310 1999 4.3 Gb No Not attempted

Western Digital WD200 2001 20.0 Gb No Not attempted

Western Digital
WD400

2003 40.0 Gb No Not attempted

Western Digital Caviar
31600

1995 1624.6 Mb No Not attempted

Western Digital Caviar
153BA

2000 15.3 Gb No Not attempted

Maxtor 71626AP 1996 1630 Mb Yes Yes

Maxtor 90845D4 2000 8.5 Gb Yes Yes

Seagate Medalist 10232 1999 10 Gb Yes Yes

Seagate Barracuda ATA II 2000 15.3 Gb Yes Yes

Maxtor DiamondMax Plus
9

2003 120 Gb Yes Yes

Seagate U4 ST36421A 2000 6.4 Gb Yes Yes

Seagate U6 ST380020A 2002 80 Gb Yes Not attempted (I wanted to

117

preserve disk contents)

Fujitsu MPE3102AT 1999 10.2 Gb Yes Yes

Seagate Barracuda ATA V
Model ST380023A

2003 80 Gb Yes Yes

Maxtor DiamondMax Plus
8

2003 40 Gb Yes Yes

Seagate Barracuda 7200.7
Model ST380011A

2004 80Gb Yes Yes

SATA drive with SATA to IDE adapter19

Fujitsu MHV2080BH PL
HD SATA

80 Gb Yes

Solid State (Flash) IDE drives

Silicon Drive SSD-M01G-
3100

1 Gb Yes Yes

SimpleTech 94000-00964
solid state IDE drive

Yes Yes

Transcend 40-pin IDE
flash module20

1 Gb Yes Yes

Compact Flash drives in IDE Adapter21

Sandisk CF SDCFB 2003 256 Mb Yes Yes

Canon FC-32MH 2002 32 Mb Yes Not attempted – drive too
small

Iomega Microdrive
DMDM-1034022

340 Mb Yes Yes

19 Generic IDE to SATA or SATA to IDE Adapter, purchased on Amazon $2.99
20 Some Transcend modules may not work. The tested module had identification number 145194R 0502 SS63 1G 0632.
21 SYBA SD-CF-IDE-DI IDE to Compact Flash Adapter (Direct Insertion Mode), purchased from Newegg $8.49
22 This is a mechanical drive in a CF enclosure and needs +12V to operate.

118

SD Card in IDE Adapter23

Canon MultiMediaCard
MMC-16M

16 Mb Yes Yes – only drive A (card
too small for B, C, and D)

23 SLOA063 40-Pin Female IDE To SD Card Adapter made by Soarland, purchased on Amazon $18.98

119

	Introduction
	Building Tips
	Building the Computer
	Testing and Using CPUville Z80 Single-board Computer
	Using the terminal emulation program Realterm
	Monitor commands
	dump
	load
	jump
	run
	?
	help
	bload
	bdump
	diskrd
	diskwr
	cpm

	Testing the memory
	Connecting a disk drive
	Testing the disk drive

	Installing CP/M version 2.2
	CP/M system update
	About CP/M
	CP/M Source Code
	Preparing the disk for CP/M
	Putting the CP/M System Files onto the disk
	Installing the CP/M loader

	Running CP/M
	Built-in commands
	Transient commands
	Using the PCGET and PCPUT file transfer utilities

	Schematics and Explanations
	Z80 CPU
	ROM and RAM memory
	Serial Interface
	Serial Port Connector
	PATA Interface
	Memory Configuration Logic
	Connectors and miscellaneous circuit elements

	Parts organizer
	Parts list
	Selected Program Listings
	chr_echo
	ROM monitor
	Customized BIOS
	Format
	Putsys
	CP/M loader

	Table of Tested Disk Drives

