
CPUville Z80 Computer Kit Instruction Manual

By Donn Stewart

© 2016 by Donn Stewart



Table of Contents
Introduction................................................................................................................................................3
Building Tips..............................................................................................................................................5
Building the Logic Probe...........................................................................................................................9
Building the Display................................................................................................................................10
Building the Computer.............................................................................................................................13
Binary, briefly..........................................................................................................................................19
Testing the Computer...............................................................................................................................23
Z80 Programming....................................................................................................................................26
Computers in General..............................................................................................................................39
The CPUville Z80 Computer System......................................................................................................41
Computer block diagram..........................................................................................................................42
Computer Schematics and Explanations..................................................................................................43

Clocks and Reset.................................................................................................................................43
Connectors...........................................................................................................................................45
Z80 CPU and Buffers..........................................................................................................................46
Control Bus Buffer and Decoders.......................................................................................................48
2K ROM..............................................................................................................................................50
2K RAM..............................................................................................................................................52
Input Ports...........................................................................................................................................53
Output Ports.........................................................................................................................................55

Display Schematic and Explanation.........................................................................................................57
Logic Probe Schematic and Explanation.................................................................................................59
Appendix..................................................................................................................................................60

Logic Probe parts organizer and list....................................................................................................60
Display parts organizer and list...........................................................................................................61
Computer parts organizer and list........................................................................................................62
Program Listings.................................................................................................................................64
Table for hand assembling a program.................................................................................................86

Resources.................................................................................................................................................88
Web Sites.............................................................................................................................................88
Books...................................................................................................................................................88

Supplementary Materials: Building by Sections......................................................................................90

2



Introduction

The CPUville Z80 Computer Kit is an educational kit consisting of four parts: a computer kit, a bus 
display kit, a logic probe kit, and this instruction manual.

The kit is based on a small 8-bit computer system designed around the Zilog Z801 Central Processing 
Unit (CPU). This popular microprocessor has been used for years in small personal computer systems, 
and is still being used in embedded systems, such as those controlling appliances. It is easy to design 
with, yet has an extensive set of instructions, allowing sophisticated programming.

The CPUville Z80 computer is based on designs popularized by the book Build Your Own Z80 
Computer by Steve Ciarcia2. This book, while out of print, is available for on-line viewing at Google 
Books. Other design ideas come from Z80 Microcomputer Design Projects by William Barden, Jr.3, and
from me tinkering around.

The original prototype system for this kit is described in detail on my website, http://cpuville.com/  Kits/  
Z80-  kits-home  .htm  l. The wire-wrapped system described there was translated almost exactly into a 
printed circuit board system that a hobbyist or student can solder together themselves. I used the open-
source KiCad package to design the printed circuit board. The boards for the kit have been 
manufactured in the USA using lead-free technology by Advanced Circuits, Aurora, Colorado. The 
parts are all through-hole, that is, no surface-mount devices, so soldering is easy. While this project 
might be hard for a novice (there are over 500 pins to be soldered on the computer board), anyone with 
some soldering experience and patience should be able to complete it successfully.

The computer has 4096 bytes (4K4) of memory, divided into 2K erasable-programmable read-only 
memory (EPROM) and 2K random access memory (RAM). There are two input ports, which are small 
switches, that allow data entry one byte at a time. There are two output ports which display 8-bit output
on light-emitting diodes (LEDs). The maximum clock speed is 2 MHz (megahertz, or million cycles 
per second).

The computer is designed to be paired with a display board that shows the activity on the computer 
system buses, which are the sets of parallel wires the parts use to communicate with each other. The 
computer has two clock speeds. The “fast” clock is 2MHz, and runs the system when you are using the 
computer normally. The slow clock is only a few Hz. When the computer is paired with the bus display,
running it with the slow clock allows you to observe what is happening on the system buses. This 
makes a good classroom demonstration project. If a few cycles per second is still too fast, you can take 
a video of the computer running on the slow clock, and look at it frame-by-frame. In theory, the CPU 
can be single stepped, but I have had difficulty making this work reliably. Maybe I will get this to work
in the next version of the kit.

The 2K of read-only memory is in a 2716 EPROM. This comes pre-programmed with some small test 

1 Z80 is a registered trademark of Zilog, Inc.
2 Build Your Own Z80 Computer   by Steve Ciarcia, 1981, Byte Books, McGraw-Hill, Peterborough, New Hampshire
3 Z-80 Microcomputer Design Projects by William Barden, Jr., 1980, Howard W. Sams & Co., Inc, Indianapolis, Indiana
4 When discussing binary addresses I will use the convention of “K” as shorthand for the number 1024, which is 2^10. 

This convention does not apply to the use of “K” for values of electronic components, where it means 1000. 

3

http://cpuville.com/Z80.htm
http://cpuville.com/Z80.htm
http://cpuville.com/Z80.htm
http://cpuville.com/Z80.htm
http://cpuville.com/Z80.htm


programs, and with a program loader that allows the user to enter their own program into the 2K RAM,
and execute it. There is also program code for running a serial interfact, which is available as a separate
kit. A complete listing of the EPROM contents, and some example programs for entry into RAM, with 
comments, are included in this manual. The EPROM has a window over the chip to allow UV light in 
to erase it. I think this is educational, because it allows you to see how small the integrated circuit 
really is. The bulk of the part is packaging that makes it large enough for human hands to handle. The 
EPROM is socketed so you can remove it, and program it yourself if you have your own E/EPROM 
programmer. The Z80 and 2K RAM are also socketed, so if you get tired of this kit, you can take them 
out and make your own computer project.

The kit is expandable to some degree. A serial interface kit is available, that allows you to communicate
with the computer using a PC running terminal emulation software. The on-board memory and input-
output ports can be disabled by removing shorting blocks on two jumpers. This allows the hobbyist to 
create add-on boards with increased input/output ports and memory, or a memory-mapped display. 
Add-on boards can be connected to the computer using the bus connection sockets where the bus 
display board attaches. The advanced hobbyist will need to know that the Z80 interrupts and direct 
memory access signals have not been brought out to the bus connectors, so there is some limit to how 
fancy an expansion board can be. I might make an upgraded kit with these signals implemented in the 
future, but for now I am offering the simple kit as described here.

This is an educational kit. If you learn something from building the computer, then I have 
accomplished my purpose. The computer is not intended to be useful outside its educational purpose. In
particular, it is not designed to control machinery or processes where failure might result in property 
damage or injury. It has no way of being connected to the Internet, unless you make your own 
connection hardware and software. These are projects for the future.

This manual has detailed instructions for assembling the logic probe, bus display and computer kits, 
including photographs to illustrate critical component placements. There are two sets of instructions for
building the computer. One set is for those who just want to build it quickly, which can be done in a 
few hours. The other set, in the supplemental materials, is for a more “educational” assembly, where 
each section of the computer system is built one at a time, with the idea that a student would look at the
function of each section in detail. When the computer is built by sections, the logic probe or bus display
can be used to show that the section is functional before going on to build the next section. A full set of 
schematics with explanations is included. I hope you have some educational fun with this project!

--Donn Stewart, May 2012

4



Building Tips

Thanks for buying a CPUville kit. Here is what you need to build it:

1. Soldering iron. I strongly recommend a 15 watt iron. You may use  a 30 watt iron, but you will 
have to be a little more careful, and faster, to avoid damaging the parts or the board.

2. Solder. Use rosin core solder. Lead-free or lead-containing solder are fine. I have been using 
Radio Shack Standard Rosin Core Solder, 60/40, 0.032 in diameter. Use eye protection when 
soldering, and be careful, you can get nasty burns even from a 15-watt iron.

3. Tools. You will need needle nose pliers to bend leads. You will need wire cutters to cut leads 
after soldering, and possibly wire strippers if you want to solder power wires directly to the 
board. I find a small pen knife useful in prying chips or connectors from their sockets. A 
voltmeter is useful for testing continuity and voltage polarity. A logic probe is useful for 
checking voltages on IC pins while the computer is running, to track down signal connection 
problems.

4. De-soldering tool. Hopefully you will not need to remove any parts from the board, but if you 
do, some kind of desoldering tool is needed. I use a “Soldapullt”, a kind of spring-loaded 
syringe that aspirates melted solder quickly. Despite using this, I destroy about half the parts I 
take off, so it is good to be careful when placing the parts in the first place, so you don't have to 
remove them later.

Soldering tips:

1. Before you plug in the iron, clean the tip with something mildly abrasive, like steel wool or a 
3M Scotchbrite pad (plain ones, not the ones with soap in them).

2. Let the iron get hot, then tin the tip with lots of solder (let it drip off some). With a fresh coat of 
shiny solder the heat transfer is best.

3. Wipe the tinned tip on a wet sponge briefly to get off excess solder. Wipe it from time to time 
while soldering, so you don't get a big solder drop on it.

4. All CPUville kits have through-hole parts (no surface-mounted devices). This makes it easy for 
even inexperienced hobbyists to be successful.

5. The basic technique of soldering a through-hole lead is as follows:
1. Apply the soldering iron tip so that it heats both the lead and the pad on the circuit board
2. Wait a few seconds (I count to 4), then apply the solder.
3. Apply only the minimum amount of solder to make a small cones around the leads, like this:

5



This is only about 1/8th inch of the 0.032 inc diameter solder that I use. If you keep applying
the solder, it will drip down the lead to the other side of the board, and you can get shorts. 
Plus, it looks bad.

4. Remove the solder first, wait a few seconds, then remove the soldering iron. Pull the iron tip
away at a low angle so as not to make a solder blob.

5. There are some pads with connections to large copper zones (ground planes) like these:

These require extra heat to make good connections, because the zones wick away the 
soldering iron heat. You might need a more powerful (30 watt) soldering iron. If all else 
fails, you can take a razor blade and cut one or two of the connecting traces. This should 
slow the escape of heat enough to solder.

6. The three main errors one might make are these:
1. Cold joint. This happens when the iron heats only the pad, leaving the lead cold. The solder 

sticks to the pad, but there is no electrical connection with the lead. If this happens, you can 
usually just re-heat the joint with the soldering iron in the proper way (both the lead and the 
pad), and the electrical connection will be made.

2. Solder blob. This happens if you heat the lead and not the pad, or if you pull the iron up the 
lead, dragging solder with it. If this happens, you can probably pick up the blob with the hot
soldering iron tip, and either wipe it off on your sponge and start again, or carry it down to 
the joint and make a proper connection.

3. Solder bridge. This happens if you use too much solder, and if flows over to another pad. 
This is bad, because it causes a short circuit, and can damage parts.

If this happens, you have to remove the solder with a desoldering tool, and re-do the joints.
Other tips

1. Be careful not to damage the traces on the board. They are very thin copper films, just under a 
thin plastic layer of solder mask (the green stuff). If you plop the board down on a hard surface 
that has hard debris on it (like ICs, screws etc.) it is easy to cut a trace. Such damage can be 
fixed, if you can find it, but try to avoid it in the first place.

6



2. When soldering multi-pin components, like the ICs, it is important to hold the parts against the 
board when soldering so they aren't “up in the air” when the solder hardens. The connections 
might be OK, but it looks terrible. If you make a lot of connections on a part while it is up in the
air it is very difficult to get it to sit back down, because you cannot heat all the connections at 
the same time. To prevent this, I like to solder the lowest profile parts first, like the ICs, because
when the board is upside down they will be pressed against the top of the board by the surface 
of the table I am working on. Then, I solder the taller parts, like the LEDs, then the switches 
and capacitors. Sometimes, I need to put something beneath the component to support it while 
the board is upside down to be soldered, like a rolled-up piece of paper. Another technique is to 
put a tiny drop of solder on the tip of the iron, press the chip against the board with one hand, 
and apply the drop of solder to one of the leads. When the solder hardens, it holds the chip in 
place. Solder the other leads, then come back and re-solder the one you used to hold it. It is 
good to re-solder it because the original solder drop will not have had any rosin in it. The rosin 
in the cold solder helps the electrical connection to be clean.

3. The components with long bendable leads (capacitors, resistors, and LEDs) can be inserted, and
then the leads bent to hold them in place:

4. You might have to bend the leads on ICs to get them to fit into the holes on the boards. Place 
the part on the table and bend the leads all at once, like this:

7



Bending the leads one-by-one or all together with the needle nose pliers doesn't work as well 
for some reason.

5. After you have soldered a row or two check the joints with a magnifying glass. These kits have 
small leads and pads, and it can be hard to see if you got the solder on correctly by naked eye. 
You can miss tiny hair-like solder bridges unless you inspect carefully. It is good to brush off 
the bottom of the board from time to time with something like a dry paintbrush, to get off any 
small solder drops that are sitting there. Also, hold the board up to the light, looking at the 
bottom. If you can see light coming through any of the holes, that means there is inadequate 
solder. The computer kit has over 500 connections to solder, and you will probably forget to do 
some. I have. Of course, the vias, the little plated holes where a printed circuit board trace goes 
from one side of the board to the other, do not need any solder, so they will stay open.

8



Building the Logic Probe

Please refer to the new logic probe instruction manual, which can obtained from this link:

http://www.cpuville.com/Kits/logic-probe-instructions.pdf

9

http://www.cpuville.com/Kits/logic-probe-instructions.pdf


Building the Display

Next to the logic probe, the display is easiest to build. If you bought both the display and computer kit, 
build the display first.

1. Use the parts organizer sheet (in the Appendix) to count the parts, and get familiar with them.

2. Most of the parts need to be placed in the board in the proper orientation:
1. LEDs: the cathode (the short lead) is the more negative of the two leads, and is marked by 

the flat side of the flange on the plastic LED body. The flat side – short lead goes toward the
RIGHT (see the picture in the logic probe instructions).

2. ICs: The LEFT-hand side of each IC has a little cut-out:

10



This makes sure that Pin 1 will be in the LEFT lower corner.
3. Resistors and ceramic capacitors (disks) do not have to be oriented.
4. The 16-pin connectors have no orientation, but there is a cut-out toward one end, I usually put 

this toward the top of the board.
5. There is no reason to put the parts on the board in any particular order. You should start with the

low-profile parts first, then work up to the taller parts. This is because when you have the board 
upside down for soldering, the parts will sit flat against the top side. The parts from flattest to 
tallest: resistors, ICs, sockets for connectors, LEDs, capacitor.

The display is simple to build, but soldering all those resistors and LEDs can get tiring. Take your time 
and try to get the LEDs in so they stand up straight. What I have tried is to solder one lead of each 
LED, then turn the board over and try to straighten the LED bodies. Since the other lead is not soldered
you can bend them a little. Do not use too much force, or you can break the LED body off the leads. 
They don't have to be perfectly straight. The LEDs supplied with the kit have a fairly wide viewing 
angle.

You can test the display by inserting solid-core wires into IDC2 socket pin holes 9 and 16:

Connect +5V Regulated DC5 to the wire in hole 16, and ground to the wire in hole 9. All the LEDs will 
light. Then, if you insert a third wire from the same circuit connected to ground into each other hole of 

5 This project requires a +5V regulated DC power supply capable of at least 2000 mA (i.e., a 10 watt power supply). An 
unregulated power supply will not work properly and may damage the system.

11

Pin hole 16 = +5V

Pin hole 9 = GND



the connectors, one at a time, the LED corresponding to that hole should turn off.

When you connect the display board to the computer with the ribbon cables, be very careful that the 
pins all go into holes. The connectors can be shifted one pin up or down, and still fit:
Make sure each pin goes into each hole.

12

Mis-plugged



Building the Computer

1. Use the parts organizer sheet (in the Appendix) to count the parts, and get familiar with them.

13



2. Most of the parts need to be placed in the board in the proper orientation:
1. LEDs: the cathode (the short lead) is the more negative of the two leads, and is marked by 

the flat side of the flange on the plastic LED body. The flat side – short lead goes toward the
RIGHT:

2. ICs: The LEFT-hand side of each IC has a little cut-out:

This makes sure that Pin 1 will be in the LEFT lower corner.
3. Electrolytic capacitors (little round can): The more negative lead is marked with a stripe. In 

this computer design, it doesn't really matter which side it goes in, but put it toward the 
LEFT anyway:

14



The small ceramic capacitor (disk) doesn't have any polarity.
4. IF YOU DON'T READ ANY OTHER INSTRUCTIONS READ THIS ONE. Resistor 

networks: these go in with the marked pin (the common pin) to the RIGHT:

This placement is correct as shown in this photo. I made a mistake when I made the 
schematic module for this part, so you have to put it in backward, that is, with pin 1 to the 
RIGHT. I will fix this in a future version of the computer board.

5. The oscillator has a sharp corner and a dot that go to the LEFT.

6. Resistors and ceramic capacitors (disks) do not have to be oriented.

15



7. The switches go in with “On” toward the top.
8. The two-pin headers for the jumpers are not oriented. However, be sure to put the shorting 

blocks on them before you try to run the computer:

The computer's on-board memory and input-output ports are disabled if the shorting blocks 
are removed.

9. The header in the right upper corner, for connection to the logic probe, is oriented with the 
white plastic tab toward the front of the board:

10. The 16-pin connectors have no orientation, but there is a cut-out toward one end, I usually 
put this toward the top of the board. Similarly, the 40-pin connector for the Z80 and the 24-
pin connectors for the EPROM and RAM can go either way.

3. Once you are familiar with the parts and how they are oriented in the board you can start 
soldering. If you are interested in an educational building plan, see the supplemental material 
“Building by Sections”. If you just want to build it, then read on.

4. Review the section “Soldering Tips” before you start. There is no reason to solder the parts into 
the board in any particular order. Start with the low-profile parts first, then work up to the taller 
parts. This is because when you have the board upside down for soldering, the parts will sit flat 
against the top side of the board if you build from low- to high-profile. The parts from flattest to
tallest: resistors, ICs, sockets for ICs and connectors, oscillator, LEDs, switches, headers (two-
pin connectors), power-in jack, and electrolytic capacitor. You can bend the leads of the 

16



resistors and LEDs to help hold them while soldering.

Trim the leads off the resistors, LEDs and capacitors close to the board after you solder them. 
There is no need to trim the leads of the ICs, sockets, oscillator, or headers.

5. The power-in jack has tab connectors, but round holes. This is because to make slots would cost
about $3.00 more per board, and slots are not necessary for a good connection. The tabs fit 
tight, you might have to apply a little pressure to get them to go in the hole. Then, just fill in the
holes with solder:

17



6. Once you have finished making all the connections, inspect the board carefully to make sure 
you have not forgotten to solder any pins. Hold the board up to a bright light, looking at the 
bottom. Light will come through any open holes (of course the via holes, where circuit board 
traces go from one side of the board to the other, will be open, but all the holes with pins in 
them should be soldered shut). If you see open holes, solder them. Look for solder bridges. If 
everything looks good you are ready to do some test runs.

18



Binary, briefly

To test the computer you will need to know a little about binary numbers. Binary, or base-2, is the 
favored number system for computers because it is relatively easy to design circuits that have two 
stable states6. These states are 0 and 1, and in the computer you are building, are equivalent to 0 volts 
or ground (GND), and +5 volts or Vcc. These states are also called high and low, or clear and set 
depending on the situation.

Binary notation uses ones and zeros (1's and 0's) that are borrowed from the ordinary Arabic numerals. 
Each number is made up of a string of these numerals. The rightmost numeral occupies the one's place, 
same as in decimal notation. However, the next place to the left, instead of the ten's place, is the two's 
place. The next place is the four's place, and the eight's place is next to that. Each place in the number 
will be double the place to its right. The value of the number, as in decimal, is the sum of the value of 
each place:

Binary 1100 = (1 x 8) + (1 x 4) + (0 x 2) + (0 x 1) = 8 + 4 + 0 + 0 = decimal 12

Long binary numbers can confuse the eye, so there is a shorthand notation that is used to write them. 
This system is hexadecimal, or base-16, number system. Hexadecimal notation needs 16 numerals. It 
borrows its first 10 from the Arabic numerals used in the decimal system. Its last 6 are the letters A 
through F. Both upper and lower case can be used for the letter-numerals. There is a close connection 
between hexadecimal and binary notation. Here is the table:

6 Some early computers, such as ENIAC, used decimal numbers, and had circuits with 10 stable states.

19



Binary Hexadecimal Decimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 A or a 10

1011 B or b 11

1100 C or c 12

1101 D or d 13

1110 E or e 14

1111 F or f 15

The four-bit binary numbers in the table are called nybbles. Each nybble can be written as one 
hexadecimal numeral. Note the use of leading zeros in the nybbles. This is characteristic of the way 
numbers are written when working with computer systems at the hardware and machine code level, 
because we are dealing with number widths defined by hardware. The Z80 has 8-bit binary registers 
and data words, so we are usually dealing with two-nybble numbers called bytes. Typically, binary 
numbers are written with a space between the nybbles in a document like the one you are reading, to 
allow the eye a little relief from the long strings of 1's and 0's. Also, it is easy to convert the binary 
numbers to hexadecimal when they are written this way. For example, consider this 16-bit binary 
number:

1101 1010 0011 1001

By referring to the table above, you can quickly write this as a hexadecimal number:

DA39

In order to make clear which number system is being used, we will add some extra information to the 
numbers. The convention I will use in this manual, which is used widely, and in most assemblers, is to 
add a leading “zero x” (0x) to a hexadecimal number, like this:

20



0xDA39

Computer programmers like to use this notation, because the leading zero tells the parser that what 
follows is a number, not a word. Another convention is to use a trailing lower-case “h” for hexadecimal
numbers:

DA39h

Binary numbers are sometimes designated with a trailing lower-case “b”, and decimal numbers with a 
lower-case “d”:

1101 1010 0011 1001b
55865d

The problem here is that b and d are both hexadecimal numerals, so we need to be a little careful. It is 
always the responsibility of the writer to make sure that the reader knows which number system is 
being used. I like to write out the words:

binary 1101 1010 0011 1001
decimal 55865

Once you understand binary and hexadecimal notation, the next challenge is to learn binary arithmetic 
in the computer environment, where numbers have defined widths because of the hardware (registers 
and memory locations) they are contained in. Addition in such an environment can lead to odd 
outcomes if the sum exceeds the maximum width of the register. For example, in the Z80 CPU:
Binary: Decimal equivalent:
 
 1111 1100  252
+0010 0101 + 37
 0010 0001   33

Got that? The bit that is carried-out cannot fit in the 8-bit register, so the result is not what you might 
have hoped for. Fortunately, the CPU keeps track of the carry-out in a one-bit register called the carry 
flag. We can check the carry flag after the addition operation, to make sure we are still in control of our 
arithmetic.

Binary subtraction, and negative binary number conventions, are particularly challenging. A full 
treatment of this subject is beyond the scope of this manual, but here is a brief treatment of signed 8-bit
binary numbers.

The convention for signed binary numbers is that every number with a 1 in the leftmost position is a 
negative number. There are 128 possible 8-bit numbers with a 1 in the left-most place, and 256 possible
8-bit numbers in all (including zero), so an 8-bit byte can encode signed numbers from -128 to +127. 
The values of the negative numbers are determined by thinking of the 8-bit register as a kind of 
odometer. If you count backwards from +2, you get these patterns:

21



Binary: Decimal equivalent:

0000 0010 +2
0000 0001 +1
0000 0000 +0
1111 1111 -1
1111 1110 -2
1111 1101 -3 
.
.
.
1000 0001 -127
1000 0000 -128
0111 1111   +127
0111 1110 +126

An easy way to create a negative number (remember it can only be -1 to -128 for an 8-bit byte) is by a 
method called two's-complement negation. Here is the method. We will create -2 for an example. 

First, write the positive binary number you wish to negate:

0000 0010

Complement it. That is, change each 0 to a 1, and each 1 to a 0:

1111 1101

Now, add 1:

 1111 1101
+0000 0001
 1111 1110

That's it. Note that 1111 1110 binary is negative 2, looking at the “odometer” list above.

Does it act like -2? If we add it to a positive value, say +12, the result should be +10:
 
Binary: Decimal:
 
 0000 1100 + 12
+1111 1110 +(-2)
 0000 1010 + 10

So it behaves as it should. Adding a signed, 8-bit integer is used in Z80 assembly language in relative 
jump instructions, such as the DJNZ disp instruction.

22



Testing the Computer
The 2K EPROM contains a few simple programs designed to test the computer system (see the 2K 
EPROM listing in the Appendix for details). Apply +5V DC regulated7 to the computer board, and set 
the Reset switch On (up). To access a program, you put the 16-bit binary starting address onto the input
port switches while the computer is in reset (Reset switch On). Then, take the computer out of reset 
(turn the Reset switch Off). It will jump to the address location specified by the input port switches and 
start execution from there. These are the test programs and their starting addresses:

Port reflector, address 0x001F (binary 0000 0000 0001 1111)
This program gets a data byte from each input port, and displays it on each output port. If this works 
correctly, then you know that the input and output ports work, and that the Z80 CPU is communicating 
with the 2K EPROM properly. This program does not test the 2K static RAM.

Simple counter, address 0x002A (binary 0000 0000 0010 1010)
In this program, the Z80 increments the value in the 8-bit register A and displays the result on output 
port  0. The output port display will go from 0 to 255 (binary 0000 0000 to 1111 1111) over and over 
again. It is useful when the bus display board is attached to watch how the CPU operates the bus 
signals when the slow clock is on. With the fast clock the bus display and outputs are a blur, but if you 
reset the computer while this program is running, port 0 will display a random number between 0 and 
255 decimal.

Count to a million,   address   0x0032 (binary 0000 0000 0011 0010)  
This program counts down 16 times by decrementing the A register, then increments the 16-bit register 
pair HL and displays the result on the output ports 1 and 0. The result is 16 x 65, 536 = 1,048,576 
operations for a full cycling of the output. It is impressive to run this program with the slow clock, 
which seems to take forever to increment the output once, and compare that to the 2MHz clock, which 
goes through the whole count in a second or two. This gives a visible demonstration of the speed of the 
computer.

Program loader,   address   0x0046 (binary 0000 0000 0100 0110)  
This program takes bytes from input port 0 and puts them in RAM, one after the other. After you start 
the program, place a byte intended for input on the port 0 switches, then close and open the 
RIGHTmost switch on input port 1. When you close this switch, the byte is written into RAM, and the 
output port 1 lights all come on. When you close the switch, output port 0 will show the byte you have 
written, and port 1 will show the low-byte of the RAM address where the byte was place. Repeat this 
process for each byte in your program. When all the bytes have been entered, close the LEFTmost 
switch on input port 1. The program will then jump to the beginning of RAM and execute the program 
there. See the appendix for some program examples. For example, to load the short program  
RAM_test_1.asm, one would follow these steps:

1. With the computer in reset (Reset switch On), select the Fast clock, and put 0x0046 (binary bit 
pattern 0000 0000 0100 0110) on the input port switches.

2. Set the Reset switch Off. The computer will now jump to the address 0x0046 in ROM and start 
executing the code there, which is the Program Loader (see the ROM listing 2K_ROM_6.asm 

7 This project requires a +5V regulated DC power supply capable of at least 2000 mA (i.e., a 10 watt power supply). An 
unregulated power supply will not work properly and may damage the system.

23



in the appendix).
3. The RAM_test_1.asm program has been assembled for you. On the listing, you can see the 

machine code bytes listed next to the RAM addresses in which they are to be placed. The first 
instruction in the program,  ld a,005h, means “load the A register with the hexadecimal value
05”. This instruction is assembled to create the machine code 0x3e, 0x05. These bytes need to 
be placed into RAM addresses 0x0800 and 0x0801 in order for the processor to execute this 
instruction.

4.  The program loader program will place bytes into RAM one after the other starting at address 
0x0800 as you enter them into the input port 0 switches. You enter the bytes this way:
1. Place the byte to be entered on the port 0 switches. The first byte is 0x3e. The binary bit 

pattern for this byte is 0011 1110.
2. Close the RIGHTmost switch on input port 1. The output port 1 LEDs will all light up, 

signaling that the byte has been entered into RAM
3. Open the RIGHTmost switch on input port 1. The output port 1 LEDs will show the lower 

byte of the RAM address where the program code byte was entered (binary 0000 0000 for 
the first byte), and the byte you entered will show on the output port 0 LEDs (bit pattern 
binary 0011 1110)

4. Place the next byte to be entered (0x05, binary pattern 0000 0101) on the input port 0 
switches.

5. Close and open the RIGHTmost switch on input port 1 as before. The output port 1 LEDs 
with light when you close the switch, and then will display the low-order byte of the RAM 
address where this byte was entered, now binary 0000 0001. The byte 0x05, which is the 
code you entered, will be displayed on the port 0 LEDs

6. Do this for all the bytes in the program.
7. After you have entered the last byte (76h, binary pattern 0111 0110), close the LEFTmost 

switch on input port 1. This will cause the program loader program to jump to the first 
location in RAM (address 0080h) and execute the code it finds there. This will be the simple
RAM test program you entered.

8. This program puts the bytes 05h and 0Ah on output ports 0 and 1, respectively, then halts. 
The halt instruction causes the CPU to cease program execution until it is reset8.

9. If you reset the CPU, you can switch to the slow clock, and put the address 0x0800 (the start
of RAM) on the input ports. When you take it out of reset, it will jump to the beginning of 
RAM, and execute the program you entered there. Then you can see what is happening on 
the buses during the halt state, with the slow clock running.

Memory test,   address   0x0074 (binary 0000 0000 0111 0100)  
This program places a byte value into each location in the memory, starting at the beginning of the 2K 
RAM, and reads it back. It tests to see if it gets the same value back. If it gets a different value, that is 
an indication either that the RAM is not working properly, or that the program has finished going 
through the RAM, and is now addressing the 2K EPROM, which cannot be written by the computer. 

8 In the halt state, the CPU continues to run. It fetches instructions, and ignores them, executing no-operations (NOP, 
opcode 0x00) internally. After each instruction fetch, the CPU will execute a memory refresh cycle, which you can see 
on the bus display if you run the slow clock, or with a logic probe if the fast clock is selected. The memory refresh 
cycles are for systems with dynamic memory. Our system has static memory, so the refresh cycles are not needed. A 
refresh cycle can be identified by the MemReq signal coming on alone, without a Read or Write signal accompanying it, 
and by a low value on the Z80 pin 28. The lower 7 bits of the address bus can be used as a row address for refreshing 
dynamic memories during a refresh cycle.

24



The program displays the address on the output ports. If the resulting address is binary 0001 0000 0000
0000, which is equivalent to 4K, this is an indication that every address in the RAM is working 
properly. If it is some lesser value, that is a sign that all is not well.

Peek,   address   0x008D (binary 0000 0000 1000 1101)  
This program allows you to look at any address in memory and see what is stored there. You put the 16-
bit address you want to “peek” into on the input ports, and the contents of that address location will be 
displayed on output port 0. For example, if you put the address 001Fh on the input port switches, the 
binary pattern 1101 1011, or DBh will be displayed on output port 0. This is the first machine code byte
in the Port reflector program.

Poke,   address   0x0099 (binary 0000 0000 1001 1001)  
This program allows you to put (“poke”) a byte anywhere in RAM. It is similar to the program loader, 
except you have to put the address in for each byte you enter. After you start the program, place the 
high-order byte of the address on the input port 0 switches, then close and open the RIGHTmost switch
on input port 1. Do the same for the low-order address byte next. The address will show on the output 
ports. Then, enter the data byte to be placed into that location. When you close the switch, this byte is 
written into RAM. When you open the switch after entering the byte, the program starts over so you 
can enter another byte if you want. You can use Peek to verify that the data byte was written. This 
program can only enter bytes into RAM (addresses 0800h to 0FFFh). It won't be able to store anything 
in ROM, because the ROM chip cannot be written while it is plugged into the computer. It needs a 
separate programmer with special timing signals and +25V to program.

If all this works, congratulations, you have built your own working Z80 computer!

25



Z80 Programming

The Z80 CPU, like all stored-program computer processors, gets its instructions from the system 
memory. These instructions are binary numbers that code for the operations the programmer wants the 
CPU to perform. Operation codes are called opcodes for short, and the set of these numbers is the 
machine code or machine language of the processor. Some operations will take additional numbers, or 
operands, which are 8- or 16- bit numbers, 8-bit port addresses, or 16-bit memory addresses.

Since the opcodes are just numbers, the Z80 designers created English-derived abbreviations and short 
words, called mnemonics, that are associated with the opcodes. These mnemonics, or “aids to 
memory”, help a human programmer write a program without having to continually look up every 
opcode. After the program is written, each mnemonic with its associated operands can be easily 
assembled into one machine language statement. That is why this type of programming language is 
called assembly language. Each processor has its own assembly language, which depends on the 
structure of the processor. You can easily assemble short programs “by hand” by referring to the opcode
tables, but for long programs there are assembler programs that will do this for you. 

To really learn Z80 assembly language programming you would need a semester course with a fat 
textbook9. This processor understands over 150 different instructions. You can get a complete table of 
instructions in the Z80 datasheet, or in the Z80 CPU Users Manual from Zilog, Inc. 
(http://www.zilog.com/docs/z80/um0080.pdf). There are excellent resources on the Internet for learning
assembly language, and free assembler programs (see Resources). However, since most programs are 
written with only a subset of the whole instruction set, you can get started without much study. The 
function of many of the less-used instructions can be duplicated with a few of the common instructions.

I have decided to show here the instructions I have used in the programs included in this instruction 
manual, which are in the first part of the 2K ROM and in the example programs for loading into RAM. 
Program listings are in the Appendix. These programs use about 30 of the available Z80 instructions. 
You can write any program with this subset of instructions, or with even fewer if you want. The 
original stored-program computer had only 7 instructions, so 30 is plenty.

Before we introduce the instructions we need to introduce the processor. What exactly does it do? The 
Z80, like any computer processor, does one small thing at a time, very fast. The small things are simple
operations (add, subtract, and logical operations like AND and OR), data movement, and program flow 
control that can respond to changes in conditions or the results of calculations. The operations are 
performed on data held in special locations inside the processor called registers. The Z80 has two sets 
of 14 registers, but we will only use a few of these. The ones we will use are A and B, and H and L10. 
Each of these registers holds one 8-bit number. The A register is the main register that is involved in 
operations and data movement. Whenever you want to get a number from memory to operate on, you 
need to load it from memory into the A register. Once it is in the A register, there are other instructions 
that allow you to copy this number to the other registers. Also, the A register will usually hold the result
of an arithmetic or logical operation. For example, the instruction ADD A,B (opcode 1000 0000 binary,

9 I learned by studying Z80 Assembly Language Programming by Lance A. Leventhal, Osborne/McGraw-Hill, 1979, 619 
pages

10 Register designations and mnemonics in Z80 assembly language can be either upper or lower case (case insensitive). 
This is not true of labels, however.

26

http://www.zilog.com/docs/z80/um0080.pdf


or 80h), will add the contents of the B register to the contents of the A register, with the result replacing
the original contents of the A register. For this reason, the A register is also called the accumulator, in 
keeping with the original total-keeping registers of early computers like the ENIAC.

The Z80 has a series of one-bit registers, or flip-flops, each of which is set (made equal to 1),  or not set
(made equal to 0) by the operations as they are performed. These are the processor flags, and are used 
to make decisions about the program flow. For example, the JP NZ instruction (“jump if not zero”, 
opcode 1100 0010 binary, or C2h) will cause the program to jump to a new address if the zero flag (Z 
for short) is not set by the previous operation, often a subtraction. The other flag used in the programs 
in this manual is the minus flag, or M for short, which is set (becomes 1) if the previous operation 
resulted in a negative number. A third flag, the carry flag, or C for short, is often used, but none of the 
programs in ther first part of the ROM use it. It is used in the second part of the ROM which contains 
the serial port instructions.

The H and L registers are special in that some instructions use the pair to designate a 16-bit address. 
For example, the instruction LD (HL),A  (opcode 0111 0111 binary, or 77h) will place (load) the 
contents of the A register into the memory location indicated by the 16-bit value held in the H and L 
registers. The H and L stand for “high” byte and “low” byte of the address. The parentheses around HL 
indicate that this is will be treated as a memory address. So, if H is 08h, and L is 40h, then this 
instruction will place the contents of register A into memory location 0840h.

There is also a 16-bit Program Counter (PC) register, that holds the address of the next instruction to be
fetched. The PC is set to 0x0000 when the computer is reset, and starts executing code from there once 
it is taken out of reset (made to run). The default behavior is that the PC is incremented by the number 
of bytes in the last instruction fetched, so program execution goes on one instruction after another, from
low memory addresses toward high. The program flow control instructions (JP, or jump) alter this flow 
of execution by changing the PC. This causes the CPU to fetch instructions from new areas of memory,
or “jump” to new code.

Here is the subset of instructions that are used in the first part of the ROM and in programs in this 
manual (with a few extras thrown in for completeness):

27



Arithmetic and Logical Operations

Mnemonic Opcode Operand Operand Meaning

AND number E6 number Logical AND A and number, result to A

AND B A0 Logical AND A and register B, result to A

OR number F6 number Logical OR A and number, result to A

OR B B0 Logical OR A and register B, result to A

XOR number EE number Logical exclusive-OR A and number, result to A

XOR B A8 Logical exclusive-OR A and register B, result to A

CPL 2F Logical complement A (change 1s to 0s, and 0s to 1s)

ADD11 A,number C6 number Add number to A, result to A

ADD A,B 80 Add B to A, result to A

ADC A,number CE number Add number and carry to A, result to A

ADC A,B 88 Add B and carry to A, result to A

SUB number D6 number Subtract number from A, result to A

SUB B 90 Subtract B from A, result to A

SBC A,number DE number Subtract number and borrow from A, result to A

SBC A,B 98 Subtract B and borrow from A, result to A

CP number FE number Subtract number from A, leave A unchanged (flags change)

CP B B8 Subtract B from A, leave A unchanged (flags change)

INC A 3C Increment the 8-bit value in A (add 1)

INC HL 23 Increment the 16-bit value in HL (add 1)

11 The “official” assembly language reference has “ADD A,number” for addition to the A register, but “SUB number” for subtraction from the A register. Most 
assembler programs will assemble “ADD A,number” and “ADD number” to the same opcode. Same with “SUB number” and “SUB A, number”.

28



Program Flow Control Operations

Mnemonic Opcode Operand Operand Meaning

DJNZ disp 10 disp Decrement B, jump disp12 if not zero (operation used as a counter)

HALT 76 Stop CPU execution. Only interrupt can restart

JP (HL) E9 Jump to the address indicated by HL

JP addr C3 addr lo addr hi Jump to address (unconditional jump)

JP C,addr DA addr lo addr hi Jump to address if carry flag set (C = 1)

JP NC,addr D2 addr lo addr hi Jump to address if carry flag cleared (C = 0)

JP Z, addr CA addr lo addr hi Jump to address if zero flag set (Z = 1)

JP NZ, addr C2 addr lo addr hi Jump to address if zero flag cleared (Z = 0)

JP M,addr FA addr lo addr hi Jump to address if minus flag set (M = 1)

JP P,addr F2 addr lo addr hi Jump to address if minus flag cleared (M = 0)

12 The displacement is an 8-bit signed value that is added to the program counter if the jump is executed, that is, if the zero flag is not set (NZ). After the DJNZ 
instruction is fetched, the program counter will be pointing to the address of the first byte of the next instruction. The DJNZ instruction is two bytes long. So, to jump
back to the DJNZ instruction, the displacement value needs to be -2, or FE hexadecimal. See the discussion on the page following the operation table.

29



Data Movement Operations

Mnemonic Opcode Operand Operand Meaning

LD (addr),A 32 addr lo addr hi Load memory location with contents of A

LD (HL),A 77 Load memory location indicated by HL with A

LD A,(addr) 3A addr lo addr hi Load A with contents of memory location

LD A,(HL) 7E Load A with memory location indicated by HL

LD A,B 78 Load A with contents of B

LD A,H 7C Load A with contents of H

LD A,L 7D Load A with contents of L

LD A,number 3E number Load A with an 8-bit number

LD B,A 47 Load B with contents of A

LD B,number 06 number Load B with an 8-bit number

LD H,A 67 Load H with the contents of A

LD H,number 26 number Load H with an 8-bit number

LD HL,number 21 num lo num hi Load HL with a 16-bit number

LD L,A 6F Load L with the contents of A

LD L,number 2E number Load L with an 8-bit number

OUT (port),A D3 port Place the 8-bit contents of A onto an output port

IN A,(port) DB port Place the 8-bit value from port into the A register

30



Some operations take one- or two-byte operands. The two-byte operands are read by the CPU in the order low-order byte first, then the high-
order byte. In other words, the low order byte of a two-byte operand will be in the lower-memory address location, and the high-order byte 
will be in the higher memory address location. This is called little-endian byte order13. This is the meaning of the “addr lo” and “addr hi”, or 
“num lo” and “num hi” in the above table of operations. The program listings in the Appendix will show this clearly. Numbers can be either 
8- or 16-bit. Memory addresses are 16-bit. Port addresses are 8-bit.

There is one strange operand above, labeled as “disp”, for the DJNZ instruction. This is a special instruction used for loops. This instruction 
decrements (decreases by one) the B register, and checks the zero flag. If the zero flag is not set, meaning the B register contains a non-zero 
value, the instruction uses the disp (displacement) value to calculate a jump relative to the current program counter. The disp value is a 
signed, 8-bit number. The jump works this way. After the DJNZ instruction and its operand are fetched, the program counter (PC) will be 
pointing to the memory location that is after the disp location. The displacement value in the DJNZ instruction in the Program Loader 
program, 0xFE, is negative two. When this is added to the program counter, it is brought back two locations, and will point to the DJNZ 
instruction again, making a loop that is used for a delay. The instruction keeps decrementing the B register until it is zero. Then, the zero flag
is set (= 1), and the jump is not made. Instruction execution proceeds from the location after the disp value.

In addition to the opcodes, if you are using an assembler program, that program may use pseudo-opcodes called assembler directives. You 
can see the use of these in the program listings in the Appendix. The EQU directive makes a label equal to a value, so you can use the label 
as an operand in later instructions. The ORG directive tells the assembler where to start the memory addresses it will use. The DEFM 
directive (define message), puts the ASCII code for a string of alphanumeric characters into the memory. The similar DEFB directive (define
byte) puts one or more bytes into the memory.

An assembly language program in written using a word processor, or piece of paper, in four columns. These are the labels, the opcode, the 
operand(s), and the comments. The opcode and operand(s) is the assembly language. Sometimes line numbers are added as another column, 
but are not necessary for small programs. As an example, we will write a simple program that takes an 8-bit number from each input port, 
adds them, and displays the result on the output ports.

Add_Program: ld a,00h ;Clear outputs to start
out (0),a
out (1),a

Get_addends: in a,(0) ;Get 8-bit addends
ld b,a ;Store one in B register

13 See the Wikipedia article on endianness – http://en.wikipedia.org/wiki/Endianness

31



in a,(1) ;Get the other
add a,b ;Add them
out (0),a ;Output the result
ld a,00h ;Clear port 1 LEDs
out (1),a
jp nc,Get_addends ;All done if no carry
ld a,01h ;If carry, put 1 on port 1
out (1),a
jp Get_addends ;Start again

Note the labels end with a colon (:). This tells the assembler program that the preceding characters are a label and not an instruction. The 
label itself, without the colon, is used as an operand in the jump instructions.

With the program written, we need to assemble it to create the machine code for the Z80 CPU. We can create a sheet for this with two 
columns to the left of the assembly language. These columns are for the memory addresses, and the machine code which will occupy the 
memory locations. In the listings in the Appendix, the assembler program I used has placed the machine code bytes for each instruction on 
one line, even if there are two or three bytes. But, perhaps it will be easier for hand assembly to place each byte on a separate line. We can 
help a little by making a table with the RAM memory addresses in it already. There is a blank table in the Appendix that you can print out 
and use to assemble programs. Here are the top few rows:

32



Memory address
(hexadecimal)

Machine code
(hexadecimal)

Label Assembly language Comment

0800
0801
0802

The table can have as many addresses as we need, up to the full 2K of RAM. We are starting at address 0x0800 because that is the 
beginning of RAM in the CPUville Z80 computer. If we were using an assembler program we would tell it to start assembling 
machine code for address 0x0800 with the ORG 0x0800 statement.

To start, put in the first assembly language statement:

Memory address
(hexadecimal)

Machine code
(hexadecimal)

Label Assembly language Comment

0800 Add_Program: ld a,00h ;Clear outputs to start
0801
0802

Now, look up the opcode for the “LD A,number” instruction in the opcode table on page xx and put it in the first location:

Memory address
(hexadecimal)

Machine code
(hexadecimal)

Label Assembly language Comment

0800 3E Add_Program: ld a,00h ;Clear outputs to start

0801

Then put the operand for this instruction in the next memory location. The operand is an 8-bit number (a byte), in this case the port 

33



address 00h:

Memory address
(hexadecimal)

Machine code
(hexadecimal)

Label Assembly language Comment

0800 3E Add_Program: ld a,00h ;Clear outputs to start
0801 00
0802

In other words, the instruction LD A,00H is assembled into the machine code 3Eh, 00h. The label Add_Program, which is 
equivalent to 0800h, indicates where the program starts. It is not used in this assembly, but it is helpful to indicate the program start 
address to human eyes. Put in the next instruction, and then its opcode and operand in the next available memory locations:

Memory address
(hexadecimal)

Machine code
(hexadecimal)

Label Assembly language Comment

0800 3E Add_Program: ld a,00h    ;Clear outputs to start
0801 00
0802 D3 out (0),a
0803 00
0804

Continue until you have assembled down to the first jump instruction: 

Memory address
(hexadecimal)

Machine code
(hexadecimal)

Label Assembly language Comment

0800 3E Add_Program: ld a,00h ;Clear outputs to start
0801 00
0802 D3 out (0),a
0803 00

34



0804 D3 out (1),a
0805 01
0806 DB Get_addends: in a,(0) ;Get 8-bit addends
0807 00
0808 47 ld b,a ;Store one in B register
0809 DB in a,(1) ;Get the other
080A 01
080B 80 add a,b ;Add them
080C D3 out (0),a ;Output the result
080D 00
080E 3E ld a,00h ;Clear port 1 LEDs
080F 00
0810 D3 out (1),a
0811 01
0812 D2 jp nc,Get_addends ;All done if no carry
0813
0814
0815

The label Get_addends is the operand of the JP NC instruction. By looking at the memory location corresponding to this label in 
the previously assembled code, we can see that this label points to memory address 0806h. We need to place this 16-bit value into the 
memory after the opcode for JP NC, with the lower byte of the operand in the lower byte of memory, and the higher byte of the 
operand in the higher byte of the memory (little endian notation) like this:

Memory address
(hexadecimal)

Machine code
(hexadecimal)

Label Assembly language Comment

0800 3E Add_Program: ld a,00h ;Clear outputs to start
0801 00

35



0802 D3 out (0),a
0803 00
0804 D3 out (1),a
0805 01
0806 DB Get_addends: in a,(0) ;Get 8-bit addends
0807 00
0808 47 ld b,a ;Store one in B register
0809 DB in a,(1) ;Get the other
080A 01
080B 80 add a,b ;Add them
080C D3 out (0),a ;Output the result
080D 00
080E 3E ld a,00h ;Clear port 1 LEDs
080F 00
0810 D3 out (1),a
0811 01
0812 D2 jp nc,Get_addends ;All done if no carry
0813 06
0814 08

Sometimes, if we are assembling code that jumps ahead, we will not know what the target address of the label will be. We can put 
placeholder bytes into the jump instruction operand locations until we have assembled up to the target, then go back and put in the 
proper values once we know what the address will be. Here is the finished assembly of the addition program:

Memory address
(hexadecimal)

Machine code
(hexadecimal)

Label Assembly language Comment

0800 3E Add_Program: ld a,00h ;Clear outputs to start
0801 00

36



0802 D3 out (0),a
0803 00
0804 D3 out (1),a
0805 01
0806 DB Get_addends: in a,(0) ;Get 8-bit addends
0807 00
0808 47 ld b,a ;Store one in B register
0809 DB in a,(1) ;Get the other
080A 01
080B 80 add a,b ;Add them
080C D3 out (0),a ;Output the result
080D 00
080E 3E ld a,00h ;Clear port 1 LEDs
080F 00
0810 D3 out (1),a
0811 01
0812 D2 jp nc,Get_addends ;All done if no carry
0813 06
0814 08
0815 3E ld a,01h ;If carry, put 1 on port 1
0816 01
0817 D3 out (1),a
0818 01
0819 C3 jp Get_addends ;Start again
081A 06
081B 08
081C

37



The same program has been assembled by an assembler program, and is listed at the end of the Appendix. Run the program loader, and
enter the machine code bytes one at a time into RAM. When you execute the program, it should add the two one-byte addends on the 
input ports, showing sum on the port 0 LEDs, and the carry-out in the low-order bit of the port 1 LEDs.

38



Computers in General

A computer is a kind of universal information processor. The first computers were people. The kind of 
problem human computers worked on were iterative calculations that cannot be done with simple 
calculators. An example of this type of computation is a ballistics trajectory. A projectile, after it is fired
from a gun, experiences several forces that determine its flight path through the atmosphere, and 
ultimately, where it lands. Some of the forces depend on its velocity. But, these forces also change its 
velocity, which changes the forces, and so on, meaning that one cannot just write a simple equation that
describes the entire trajectory. The trajectory has to be broken down into small pieces, each a fraction 
of a second long. The forces, and the changes in velocity and position are calculated for each time 
interval, one at a time, starting from the initial position and velocity, until the projectile “lands”. These 
kinds of computations are called numerical integrations. Human computers would do them by hand on 
paper spreadsheets, using a mechanical calculator to do the additions, subtractions, multiplications, 
divisions, and square roots as required for each interval. They are not hard to do but are very tedious, 
and human computers get very fatigued with them, and often make simple mistakes that ruin the whole 
computation. They have a machine-like feel to them.

During World War II there was a great increase in the need for ballistics trajectory computations. 
Human computers could not keep up with the demand. The first electronic general-purpose computer, 
ENIAC (Electronic Numeric Integrator and Computer) was built for this purpose. However, it was 
created as an electronic copy of a paper spreadsheet, with a bank of machines called accumulators. 
Each accumulator was like one column of a spreadsheet. It would hold one variable, and alter the 
variable by adding, subtracting, multiplying or dividing with a variable held in another accumulator, 
according to the connections that had been made between them. If your computation needed more 
columns, you needed to add more accumulators. To program ENIAC, technicians had to re-connect the 
accumulators with plugs and wires in new patterns to match the computation being performed.

It was the ENIAC designers who realized that it would be much simpler to create a computer with a 
single accumulator, and then store the contents of the accumulator in a storage unit, what we call 
computer memory, after a calculation had been done. When the stored variable was needed for another 
iteration it could be retrieved from the memory by the accumulator. Someone also realized (history has 
forgotten who) that the instructions for the computation, what we now call the program, could also be 
stored in the same memory as numbers that coded for the operations. These numbers are called 
operation codes, or opcodes for short. An electronic unit would interpret the opcodes, and cause the 
computer to perform the calculations desired.  The electronic unit that combines the accumulator, the 
arithmetic-logic unit for calculations, and the instruction decoding circuitry is called a processor. The 
computer system is composed of the processor, the memory, and input/output devices – paper tape and 
teletypes in early computers.

The idea for a stored-program computer was circulated in a draft manuscript written by the famous 
mathematician John von Neumann. For this reason, the stored-program computer is often said to have 
von Neumann architecture. In truth, it was not von Neumann who came up with the idea, but the draft 
manuscript he authored was the main vehicle of the spread of the idea.

The first true electronic stored-program “von Neumann” computer was built at the University of 
Manchester, UK. Named the Small Scale Experimental Machine (informally the “Baby”), it ran the 

39



first true computer program on June 21, 1948. This program was a highest-factor routine, the basic 
routine that can determine if a number is prime or not. In honor of this achievement, the appendix of 
this manual has a highest-factor program that you can load and run on your finished Z80 computer. A 
highest-factor program is an example of an iterative computation that cannot be done by a simple 
calculator. Only a computer – human or machine – can tell you if a given number is prime.

40



The CPUville Z80 Computer System

The computer system in this kit is very simple. It is simple on purpose, so that it will be easy to 
understand. It is probably the simplest system that can be called a general-purpose computer. It is really
a microcomputer, which is a computer that has a processor that is a single component, in this case the 
Z80 CPU (Central Processing Unit). In early computers, the processor was built out of separate parts, 
by hand. Early computer processors used relays (automatic switches in which the electrons flow though
a wire), vacuum tubes (automatic switches in which the electrons flow through a vacuum), or 
transistors (automatic switches in which the electrons flow through a solid semiconductor material). 
These automatic switches were assembled into modules, each using just a few switches, that acted as 
logic gates. Logic gates are the basic building blocks of digital computers. You can see on the memory 
and input-output port schematics of the CPUville Z80 computer the use of a few simple logic gates 
(AND, OR, and NOR) to make decisions electronically. More complicated networks of logic gates can 
perform addition, and act as memory circuits.

When the integrated circuit was invented one of its first uses was to create logic gate chips. These can 
be built into a computer processor, as you can see on my main web site, cpuville.com. It wasn't long 
(late 1970's) before multiple logic gates were assembled onto single integrated circuit chips to create 
single-component computer processors and computer memories, and the microcomputer was born.

The Zilog Z8014 is one of the early 8-bit microprocessors. The 8-bit designation means that data flows 
into and out of the microprocessor 8-bits at a time. Computer scientists made fun of such a small data 
word width, when “real” computers of that day (late 1970's) had data word widths of 32-bits or more. 
However, it is simple to assemble larger words out of multiple 8-bit “bytes”, so the only handicap the 
8-bit computer has is slower speed. If you need to, you can calculate pi to 100 decimal digits using an 
8-bit microcomputer, or draw a Mandelbrot set, or anything else a 32- or 64-bit computer can do. It just
takes a much longer time. 8-bit microcomputers became popular with consumers because 8-bits is 
plenty of word-width to do word processing, create video games, and do number-crunching with the 
types of numbers that a consumer would most likely have to deal with. Popular early microcomputers 
using the Z80 were the Tandy Radio Shack TRS-80, and the Timex-Sinclair ZX80. The Texas 
Instruments graphing programmable calculator TI-81 (and successors) used the Z80. The first 
generation of Nintendo Game Boy video game systems used a Z80 processor.

The CPUville computer kit uses a Z80 processor because it is easy to understand how it fits into a 
system, and it is easy to design and build with. There are lots of books and web sites about using the 
Z80 that will help you understand it (see appendix). Modern microprocessors have a lot in common 
with the simpler Z80, so understanding the 8-bit microcomputer system will help you understand the 
more complicated newer 32- and 64-bit microcomputers. And, despite being an “antique”, the Z80 is 
still being made, and is pretty cheap.15

14 Z80 is a registered trademark of the Zilog corporation.
15 When shopping for Z80s for this kit I noticed that prices have been rising in the past few years. This may be because of 

increasing hobbyist demand for a limited supply. But, it may also be due to the phenomenon of IC collectors. I saw on 
eBay early edition Z80s demanding prices in double digits.

41



Computer block diagram

This diagram shows the overall architecture of the CPUville Z80 system. Any general-purpose stored-
program computer will have a similar architecture:

This block diagram shows the computer system as functional units. The Reset input controls whether 
the CPU is running or not. The Clock input drives the CPU when it is running. The CPU is connected 
with the memory that holds the program opcodes and data by a series of buses. Each bus is a set of 
parallel wires, one wire for each bit of information that is carried back and forth between these two 
units. The input and output ports are connected to the same buses.

The design of the processor dictates the features of the system buses. Since the Z80 is an 8-bit 
processor, the data bus will be 8-bits wide. One bit is carried on one wire, so there are 8 parallel wires 
in the data bus. The data bus is bidirectional. That is, data can flow from the CPU to the memory or 
output ports, or from the memory or input ports to the CPU. More about bi-directionality later.

The address bus is one-way, with information flowing from the CPU to the memory and ports. It is the 
way the CPU tells the memory or ports which location is to be written to or read from. The Z80 has 16 
wires in its address bus, meaning that 2^16 or 65,535 locations can be accessed. This is the “memory 
address space” of the processor. This number is often called “64K” informally.

The control bus is a set of 4 CPU outputs, named I/O_Req (input-output request), MemReq (memory 
request), Read, and Write. When the CPU wants to read a memory location, it will activate the 
MemReq and Read outputs. The computer system is designed so that the memory responds properly to 
this request by placing data onto the data bus so the CPU can read it. Similarly, if I/O_Req and Write 
are active, the CPU is telling the system that it wants to put a data byte onto the output port lights. The 
port circuitry is designed to respond appropriately.

This functional description must be translated into a detailed schematic design, that creates a working 
computer out of real electronic components. The following section explains the schematic design of the
computer in detail.

42

Output ports Input ports

Lights Switches

16-bits

8-bits

4-bits

Z80 CPU
Memory 
(ROM 
and 
RAM)

Clock

Reset

Address Bus

Data Bus 

Control Bus



Computer Schematics and Explanations
Clocks and Reset

The clock circuitry creates a regular train of square-wave pulses that the CPU needs in order to work. The slow clock is an R-C (resistor-
capacitor) oscillator. The inverter gates act as amplifiers to keep the oscillator going, and give a square-wave output. The final inverter gate 
acts as the output. With the capacitor and resistor values here, the frequency of the slow clock is about 3 cycles per second (3 Hz). The fast 
clock oscillator is a quartz crystal, with associated circuitry, that puts out a 2MHz square wave. 

The reset circuit is just a buffered switch. When the switch is open (in the down position on the computer board), the resistor connected to 
Vcc (+5V in this design) causes the Reset* output to be +5V, and the CPU will run. When the reset switch is closed, the output is GND (0V) 

43



and the CPU will stop. Note that an asterisk (*) on a label in this schematic indicates that the signal is active-low. Therefore, when the Reset* 
signal is 0V, the computer is in the reset state (stopped).

44



Connectors

This schematic shows the connections on the two DIP (dual in-line package) sockets for connecting the computer to the display or to an 
expansion board. These signals, shown by the labels, are the address and data buses, power, and the control signals. The system clock and 
Reset* signals are also carried by the ICD2 connector. Note that the control signals (MemReq, I/O_Req, Write, and Read) on this connector 
are active-high (no asterisk on the labels). The power-in jack and the 2-pin header connect directly to the power traces on the board. You can 
connect either one to a +5V DC regulated power supply to power the board, but the 2-pin header connection is intended for the logic probe 
connection. The bypass capacitor prevents stray noise from getting from the logic probe connection wires onto the computer board, which 
could cause irregular behavior. The power indicator is just an LED connected to the power traces through a current-limiting resistor. The LED
would burn out if connected directly, without the resistor.

45



Z80 CPU and Buffers

46



Here is the heart of the computer system. The Z80 address and data outputs (A0 to A15, and D0 to D7) pass to buffers, which amplify the 
signals so that they can drive more inputs. The outputs of these buffers are the system address and data buses to which the memory and ports 
are connected.  The address bus is output only, that is, the address is sent out from the CPU, through the buffers, to the rest of the system. The 
data bus is bi-directional, that is, data can be sent from the CPU out to the system, or read by the CPU from the system. Its buffer is connected
to the Read* control signal. This buffer is “turned around” (inputs become outputs, outputs become inputs) when the CPU sets the Read* 
signal low, thereby informing the system it wants to read data from the data bus. The labels on the buffers on the are global labels. So, when 
looking at the rest of the schematic, if you see an A0 label on an input, you know this pin is connected to the A0 output on the AddrLo1 
buffer. The power connections on the buffer ICs are not plotted, but are understood to be there. Most ICs have the GND input at the right 
lower corner of the IC (pin 10 is GND on these 20-pin buffer ICs), and Vcc, which equal +5V in this system, at the upper left corner (pin 20). 
If an IC has power connections that violate this convention, as the Z80 does, the pins are shown on the schematic.

The Z80 has inputs and outputs for features that are not used in the CPUville computer. These are the interrupt and direct memory access 
systems. The CPU inputs that trigger the use of these systems are tied to Vcc, and therefore inactivated. The outputs that the CPU uses to 
operate these systems are left unconnected. The unused Refresh* output is meant for dynamic memory refreshing. The CPUville computer 
uses only static memory, so this output is not used.

47



Control Bus Buffer and Decoders

The control bus buffer simply amplifies the Z80 control signal outputs so they can be connected to many inputs in the system. Both the 
uninverted and inverted  outputs (designated by *) are given labels for use in the system. The decoders are two halves of the same IC. The 
decoders are used to select the proper memory or input/output port IC when data is being written to, or read by, the the CPU. It “decodes” a 
two-bit address on the A0 and A1 inputs to select one of four outputs for activation. It is important that only one IC on the data bus is active at
any one time. If there were two active ICs, both feeding data to the CPU, the data would be scrambled. The top decoder is used to select the 
active memory IC. Since there are two 2K memory chips (the 2716 EPROM, and the 2016 RAM), I made the memory decoder look at the 
address bus lines A10 and A11. The addresses in the first 2K of memory (in the EPROM) will have A11 set at 0. These addresses will active 
the EPROM through the SelectMem_1K* and SelectMem_2K* outputs (see the ROM schematic for further details on how this is done). 
When A11 is 1, the 2K RAM IC is selected using SelectMem_3K* and SelectMem_4K* outputs. Higher addresses will “wrap around”. In 
other words, addresses above 4K that leave both A10 and A11 off (such as binary 0001 0000 0000 0000) will activate the 2K ROM. The other
decoder activates the ICs for input/output ports 0 and 1 using address lines A0 and A1. The decoder also creates port select signals for ports 2 

48



and 3, but these are not implemented in the current computer system. The jumpers inactivate the decoders. This is necessary if you build an 
extension board with its own RAM and I/O ports. You would have to put more decoders on your expansion board, to selectively activate the 
memory and input/output port ICs that are there.

49



2K ROM

The 2K ROM chip is activated through the SelectMem_1K* and SelectMem_2K* decoder outputs. These signals are combined by the AND 
operation created by the two logic gates. The SelectMem signals, and the chip enable input are “active-low” signals. That is, when the chip 
enable input (pin 18) is 0, the chip is selected. The decoder will make only one SelectMem output 0 at a time, so only the last three table rows 
are possible. Here is the truth table of the AND operation on the SelectMem inputs:

SelectMem_1K* SelectMem_2K* AND result

0 0 0 (not possible)

0 1 0 (chip selected)

1 0 0 (chip selected)

1 1 1 (chip not selected)

The ROM will put data on the data bus when it is selected, and when the Read* signal is given. The ROM is a “read-only memory”, and 
cannot be written to when it is part of the computer system. To write the ROM, one needs to remove it an put it into an E/EPROM 

50



programmer. But, it will hold its data when the power is off, so the CPU will have code to execute as soon as the system is powered on. A PC 
has a ROM also, called the BIOS (for basic input-output system) that will be used by the processor to start the system.

51



2K RAM

The 2K RAM is set up almost exactly the same as the 2K ROM. Unlike the ROM, the RAM can be written to and read from while is is in the 
computer system. That is why you see both Read* and Write* signals connected to the chip. The state of these inputs determines whether the 
chip takes input (Write*) or gives output (Read*). The truth table for the SelectMem* inputs is similar to that for the ROM, except that the 
SelectMem_3K and 4K decoder outputs are used:

SelectMem_3K* SelectMem_4K* AND result

0 0 0 (not possible)

0 1 0 (chip selected)

1 0 0 (chip selected)

1 1 1 (chip not selected)

Note the schematic shows a 2016 RAM IC, but kits may also be supplied with an equivalent 6116 RAM IC.

52



Input Ports

The switches control the signals to the inputs of the buffers for each port. The resistor networks will drain the “back current” produced by the 
buffer inputs so that when the switches are open the inputs will be at ground. Please note that the reference names of the two buffer ICs 
(InputPort1 and InputPort2) do not reflect the system addresses of these ports, which are 0 and 1, respectively. The reference names end with 
1 and 2 because the computer schematic software I used would not allow a reference name to end in 0. A buffer is activated (puts output on 
the data bus) when the enable inputs on pins 1 and 19 are low (logic 0), that is, 0V or ground. The logic gates make this calculation by looking
at the SelectI/OPort* and Read* signals, which come from the port decoder and the control bus buffer. The two NOR logic gates are 
configured to produce the logical OR operation (the second NOR gate is configured as an inverter). Here is the truth table for the port 0 
signals:

53



SelectI/OPort_0* Read* OR result

0 0 0

0 1 1

1 0 1

1 1 1
You can see that the only time the port buffer is active (result is 0) is when both the SelectI/OPort_0* and Read* signals are active (both 0).

54



Output Ports

The output port ICs are latches, that hold on to data once it is loaded in. Unlike the input port buffers, which open briefly to allow the data 
onto the data bus, these output ports must hold onto the data they receive from the data bus until they are written again. The latch enable 
latch-enable (LE) inputs on pin 11 are active-high, as opposed to most of the enable inputs we have seen in the system so far, which are 
active-low. So, the signal decoding to enable the latches is a little different. It requires a logical NOR operation. Here is the truth table for the 
port 0 logic:

55



SelectI/OPort_0* Write* NOR result

0 0 1

0 1 0

1 0 0

1 1 0
You can see that the latch is enabled (result is 1) when SelectI/O_0* and Write* are both active (that is, are both 0).

56



Display Schematic and Explanation

57



The display is a simple schematic. The two connectors IDC1 and IDC2 are exactly the same as the connectors on the computer. The signals 
from the connectors are inputs to the four buffer ICs, which drive the LED outputs. There is a bypass capacitor connected across the power 
lines to prevent noise from the display unit from getting onto the computer power lines.

58



Logic Probe Schematic and Explanation
The logic probe schematic and explanation is in the new logic probe instruction manual, which can be obtained from this link:

http://www.cpuville.com/Kits/logic-probe-instructions.pdf

59

http://www.cpuville.com/Kits/logic-probe-instructions.pdf


Appendix
Logic Probe parts organizer and list

The parts organizer and list for the logic probe is in the new logic probe instructions, which can be 
obtained from this link:

http://www.cpuville.com/Kits/logic-probe-instructions.pdf

60

http://www.cpuville.com/Kits/logic-probe-instructions.pdf


Display parts organizer and list

Capacitor, 0.01 uF disk

1

Red LED

30

Resistor, 470 ohm
Yellow-Violet-Brown

30

DIL16 connector

2

74LS240

4

Ref Value
C1 0.01 uF
D1 LED
D2 LED
D3 LED
D4 LED
D5 LED
D6 LED
D7 LED
D8 LED
D9 LED
D10 LED
D11 LED
D12 LED
D13 LED
D14 LED
D15 LED
D16 LED
D17 LED
D18 LED
D19 LED
D20 LED
D21 LED
D22 LED
D23 LED
D24 LED
D25 LED
D26 LED
D27 LED
D28 LED
D29 LED
D30 LED
IDC1 DIL16
IDC2 DIL16

Ref Value
R1 470 ohm
R2 470 ohm
R3 470 ohm
R4 470 ohm
R5 470 ohm
R6 470 ohm
R7 470 ohm
R8 470 ohm
R9 470 ohm
R10 470 ohm
R11 470 ohm
R12 470 ohm
R13 470 ohm
R14 470 ohm
R15 470 ohm
R16 470 ohm
R17 470 ohm
R18 470 ohm
R19 470 ohm
R20 470 ohm
R21 470 ohm
R22 470 ohm
R23 470 ohm
R24 470 ohm
R25 470 ohm
R26 470 ohm
R27 470 ohm
R28 470 ohm
R29 470 ohm
R30 470 ohm
U1 74LS240
U2 74LS240
U3 74LS240
U4 74LS240

61



Computer parts organizer and list

Capacitor, 22 uF, 16V

1

Resistor, 2.2K, ¼ watt
Red-Red-Red

2

74LS00 quad NAND

1

74LS02 quad NOR

2

74LS04 hex inverter

1

SPST_DIP_16 switches

2

SPST_DIP_8 switches

1

DIL_16 socket

2

DIL_24 socket

2

74LS139 decoder

1

2016 or 6116 2K RAM

1

2716 2K ROM

1

74LS373 latch

2

74LS240 octal buffer, 
inverting

1

1

74LS244 octal buffer

4

74LS245 bus transceiver

1

Z80 CPU

1

Resistor, 470 ohm, ¼ watt
Yellow-Violet-Brown

17

Resistor, 1K, ¼ watt
Brown-Black-Red

2

Resistor network, 1K x 9

2

LED

17

Oscillator, 2 MHz

1

2-pin header

2

Shorting block

2

Capacitor, 0.01 uF disk

1

Header with clip, 2 pin

1

Power-in jack

1

DIL 40-pin socket

1

62



Ref Value
2KRAM1 2016
AddrDecode1 74LS139
AddrHi1 74LS244
AddrLo1 74LS244
C1 22 uF
C2 0.01 uF
CPU1 Z80
CtrlBuff1 74LS240
D1 LED
D2 LED
D3 LED
D4 LED
D5 LED
D6 LED
D7 LED
D8 LED
D9 LED
D10 LED
D11 LED
D12 LED
D13 LED
D14 LED
D15 LED
D16 LED
D17 LED
Data1 74LS245
IDC1 DIL16
IDC2 DIL16
InputPort1 74LS244
InputPort2 74LS244
JP1 JUMPER (2-pin header with shorting block)
JP2 JUMPER (2-pin header with shorting block)
Mem_Logic1 74LS00
OSC1 OSCILLATOR
OutputPort1 74LS373
OutputPort2 74LS373
Port1 SPST_DIP_16
Port2 SPST_DIP_16
Port_1 74LS02
Port_2 74LS02

Ref Value
R3 2.2K
R4 470 ohm
R5 470 ohm
R6 470 ohm
R7 470 ohm
R8 470 ohm
R9 470 ohm
R10 470 ohm
R11 470 ohm
R12 470 ohm
R13 470 ohm
R14 470 ohm
R15 470 ohm
R16 470 ohm
R17 470 ohm
R18 470 ohm
R19 470 ohm
R20 2.2K
R21 1K
R22 1K
R23 470 ohm
RN1 1K_NET_9
RN2 1K_NET_9
ROM1 2716
SlowClock1 74LS04
U1 SPST_DIP_8
U2 2-PIN_HEADER
U3 POWER_IN_JACK

63



Program Listings

The following are the programs that I have written and assembled for this computer kit project. The listings are outputs of the assembler 
program I am using, z80asm, an open-source program written by Bas Wijnen that can be found at 
http://packages.qa.debian.org/z/z80asm.html. Each program is written with a text editor, and that file is used as the input for the assembler. 
The output of the assembler program is two files. One is the binary file of machine code that is intended to be loaded into memory and 
executed by the processor. The other is this listing file, which is a text file that can be read by humans.

There are five columns in this listing. In the first column are the 16-bit hexadecimal memory addresses where the machine code is to be 
stored. The second column has  the hexadecimal machine code bytes stored in the memory locations shown by the addresses. The third 
column has the labels, if the address has one. The fourth has the assembly language instructions (opcode and operand(s)). The fifth has 
comments. The labels, assembly language instructions, and comments are from the program file that I wrote. The memory addresses and 
machine code bytes are generated by the assembler program.

When the Z80 processor is taken out of reset (set to Run),  it automatically get its first instruction from memory location 0000h. The 2K ROM
listing here shows the contents of the ROM, starting at address 0000h. The ROM starts with a jump instruction in location 0000h, which will 
always be the first instruction the Z80 executes when it is taken out of reset. This instruction causes program execution to skip over the text 
message “CPUville Z80 ROM v.7” and start the Get_address program at location 0018h. This program will read a 16-bit address from the 
input ports (that was put there while the computer was in Reset) and jump to whatever program is at that address. You can jump anywhere in 
memory when you start the computer, even to RAM addresses, where you have placed your own programs.

64

http://packages.qa.debian.org/z/z80asm.html


# File 2K_ROM_7.asm
0000 org 00000h 
0000 Start_of_RAM: equ 0x0800 
0000 c3 18 00 jp Get_address ;Skip over message 
0003 .. 00 defm "CPUville Z80 ROM v.7",0 
0018 db 00 Get_address: in a,(0) ;Get address from input ports 
001a 6f ld l,a 
001b db 01 in a,(1) 
001d 67 ld h,a 
001e e9 jp (hl) ;Jump to the address 
001f db 00 Port_Reflector: in a,(0) ;Simple program to test ports 
0021 d3 00 out (0),a 
0023 db 01 in a,(1) 
0025 d3 01 out (1),a 
0027 c3 1f 00 jp Port_Reflector 
002a 3e 00 Simple_Counter: ld a,000h ;One-byte counter for slow clock 
002c d3 00 Loop_1: out (0),a 
002e 3c inc a 
002f c3 2c 00 jp Loop_1 
0032 2e 00 Count_to_a_million: ld l,000h ;Two-byte (16-bit) counter 
0034 26 00 ld h,000h ;Clear registers 
0036 3e 10 Loop_2: ld a,010h ;Count 16 times, then 
0038 3d Loop_3: dec a 
0039 c2 38 00 jp nz,Loop_3 
003c 23 inc hl ;increment the 16-bit number 
003d 7d ld a,l 
003e d3 00 out (0),a ;Output the 16-bit number 
0040 7c ld a,h 
0041 d3 01 out (1),a 
0043 c3 36 00 jp Loop_2 ;Do it again 
0046 21 00 08 Program_loader: ld hl,Start_of_RAM ;Load a program in RAM 
0049 db 01 Loop_4: in a,(1) 
004b e6 81 and 081h ;Check input port 1 
004d ca 49 00 jp z,Loop_4 ;If switches 0 and 7 open, loop 
0050 cd f5 00 call debounce 
0053 db 01 in a,(1) ;Get input port byte again 
0055 e6 80 and 080h ;Is the left switch (bit 7) closed? 

65



0057 c2 00 08 jp nz,Start_of_RAM ;Yes, run loaded program 
005a db 00 in a,(0) ;No, then right switch (bit 0) closed. 
005c d3 00 out (0),a ;Get byte from port 0, display on output 
005e 77 ld (hl),a ;Store it in RAM 
005f 3e ff ld a,0ffh ;Turn port 1 lights on (signal that 
0061 d3 01 out (1),a ;a byte was stored) 
0063 db 01 Loop_6: in a,(1) ;Wait for switch to open 
0065 e6 01 and 001h 
0067 c2 63 00 jp nz,Loop_6 
006a cd f5 00 call debounce 
006d 7d ld a,l ;Put low byte of address on port 1 
006e d3 01 out (1),a 
0070 23 inc hl ;Point to next location in RAM 
0071 c3 49 00 jp Loop_4 ;Do it again 
0074 21 00 08 Memory_test: ld hl,Start_of_RAM ;check RAM by writing and reading each location 
0077 db 01 Loop_8: in a,(1) ;read port 1 to get a bit pattern 
0079 47 ld b,a ;copy it to register b 
007a 77 ld (hl),a ;store it in memory 
007b 7e ld a,(hl) ;read back the same location 
007c b8 cp b ;same as reg b? 
007d c2 84 00 jp nz,Exit_1 ;no, test failed, exit 
0080 23 inc hl ;yes, RAM location OK 
0081 c3 77 00 jp Loop_8 ;keep going 
0084 7c Exit_1: ld a,h ;display the address 
0085 d3 01 out (1),a ;where the test failed 
0087 7d ld a,l ;should be 4K (cycled around to ROM) 
0088 d3 00 out (0),a ;any other value means bad RAM 
008a c3 74 00 jp Memory_test ;do it again (use a different bit pattern) 
008d db 00 Peek: in a,(0) ;Get low byte 
008f 6f ld l,a ;Put in reg L 
0090 db 01 in a,(1) ;Get hi byte 
0092 67 ld h,a ;Put in reg H 
0093 7e ld a,(hl) ;Get byte from memory 
0094 d3 00 out (0),a ;Display on port 0 LEDs 
0096 c3 8d 00 jp Peek ;Do it again 
0099 3e 00 Poke: ld a,000h ;Clear output port LEDs 
009b d3 00 out (0),a 

66



009d d3 01 out (1),a 
009f db 01 Loop_9: in a,(1) ;Look for switch closure 
00a1 e6 01 and 001h 
00a3 ca 9f 00 jp z,Loop_9 
00a6 cd f5 00 call debounce 
00a9 3e ff ld a,0ffh ;Light port 1 LEDs 
00ab d3 01 out (1),a 
00ad db 00 in a,(0) ;Get hi byte 
00af 67 ld h,a ;Put in reg H 
00b0 db 01 Loop_11: in a,(1) ;Look for switch open 
00b2 e6 01 and 001h 
00b4 c2 b0 00 jp nz,Loop_11 
00b7 cd f5 00 call debounce 
00ba 7c ld a,h ;Show hi byte on port 1 
00bb d3 01 out (1),a 
00bd db 01 Loop_13: in a,(1) ;Look for switch closure 
00bf e6 01 and 001h 
00c1 ca bd 00 jp z,Loop_13 
00c4 cd f5 00 call debounce 
00c7 3e ff ld a,0ffh ;Light port 0 LEDs 
00c9 d3 00 out (0),a 
00cb db 00 in a,(0) ;Get lo byte 
00cd 6f ld l,a ;Put in reg L 
00ce db 01 Loop_15: in a,(1) ;Look for switch open 
00d0 e6 01 and 001h 
00d2 c2 ce 00 jp nz,Loop_15 
00d5 cd f5 00 call debounce 
00d8 7d ld a,l ;Show lo byte on port 0 
00d9 d3 00 out (0),a 
00db db 01 Loop_17: in a,(1) ;Look for switch closure 
00dd e6 01 and 001h 
00df ca db 00 jp z,Loop_17 
00e2 cd f5 00 call debounce 
00e5 db 00 in a,(0) ;Get byte to load 
00e7 77 ld (hl),a ;Store in memory 
00e8 db 01 Loop_19: in a,(1) ;Look for switch open 
00ea e6 01 and 001h 

67



00ec c2 e8 00 jp nz,Loop_19 
00ef cd f5 00 call debounce 
00f2 c3 99 00 jp Poke ;Start over 
00f5 ; 
00f5 ;Subroutine for a switch debounce delay 
00f5 3e 10 debounce: ld a,010h ;Outer loop 
00f7 06 ff debounce_loop: ld b,0ffh ;Inner loop 
00f9 10 fe djnz $+0 ;Loop here until B reg is zero 
00fb 3d dec a 
00fc c2 f7 00 jp nz,debounce_loop 
00ff c9 ret 
0100 ; 
0100 ;The following code is for a system with a serial port. 
0100 ;Assumes the UART data port address is 02h and control/status address is 03h 
0100 ; 
0100 ;The subroutines for the serial port use these variables in high RAM: 
0100 current_location: equ 0x0f80 ;word variable in RAM 
0100 line_count: equ 0x0f82 ;byte variable in RAM 
0100 byte_count: equ 0x0f83 ;byte variable in RAM 
0100 value_pointer: equ 0x0f84 ;word variable in RAM 
0100 current_value: equ 0x0f86 ;word variable in RAM 
0100 buffer: equ 0x0f88 ;buffer in RAM -- up to stack area 
0100 ; 
0100 ;Subroutine to initialize serial port UART 
0100 ;Needs to be called only once after computer comes out of reset. 
0100 ;If called while port is active will cause port to fail. 
0100 ;16x = 9600 baud 
0100 3e 4e initialize_port: ld a,04eh ;1 stop bit, no parity, 8-bit char, 16x baud 
0102 d3 03 out (3),a ;write to control port 
0104 3e 37 ld a,037h ;enable receive and transmit 
0106 d3 03 out (3),a ;write to control port 
0108 c9 ret 
0109 ; 
0109 ;Puts a single char (byte value) on serial output 
0109 ;Call with char to send in A register. Uses B register 
0109 47 write_char: ld b,a ;store char 
010a db 03 write_char_loop: in a,(3) ;check if OK to send 

68



010c e6 01 and 001h ;check TxRDY bit 
010e ca 0a 01 jp z,write_char_loop ;loop if not set 
0111 78 ld a,b ;get char back 
0112 d3 02 out (2),a ;send to output 
0114 c9 ret ;returns with char in a 
0115 ; 
0115 ;Subroutine to write a zero-terminated string to serial output 
0115 ;Pass address of string in HL register 
0115 ;No error checking 
0115 db 03 write_string: in a,(3) ;read status 
0117 e6 01 and 001h ;check TxRDY bit 
0119 ca 15 01 jp z,write_string ;loop if not set 
011c 7e ld a,(hl) ;get char from string 
011d a7 and a ;check if 0 
011e c8 ret z ;yes, finished 
011f d3 02 out (2),a ;no, write char to output 
0121 23 inc hl ;next char in string 
0122 c3 15 01 jp write_string ;start over 
0125 ; 
0125 ;Binary loader. Receive a binary file, place in memory. 
0125 ;Address of load passed in HL, length of load (= file length) in BC 
0125 db 03 bload: in a,(3) ;get status 
0127 e6 02 and 002h ;check RxRDY bit 
0129 ca 25 01 jp z,bload ;not ready, loop 
012c db 02 in a,(2) 
012e 77 ld (hl),a 
012f 23 inc hl 
0130 0b dec bc ;byte counter 
0131 78 ld a,b ;need to test BC this way because 
0132 b1 or c ;dec rp instruction does not change flags 
0133 c2 25 01 jp nz,bload 
0136 c9 ret 
0137 ; 
0137 ;Binary dump to port. Send a stream of binary data from memory to serial output 
0137 ;Address of dump passed in HL, length of dump in BC 
0137 db 03 bdump: in a,(3) ;get status 
0139 e6 01 and 001h ;check TxRDY bit 

69



013b ca 37 01 jp z,bdump ;not ready, loop 
013e 7e ld a,(hl) 
013f d3 02 out (2),a 
0141 23 inc hl 
0142 0b dec bc 
0143 78 ld a,b ;need to test this way because 
0144 b1 or c ;dec rp instruction does not change flags 
0145 c2 37 01 jp nz,bdump 
0148 c9 ret 
0149 ; 
0149 ;Subroutine to get a string from serial input, place in buffer. 
0149 ;Buffer address passed in HL reg. 
0149 ;Uses A,BC,DE,HL registers (including calls to other subroutines). 
0149 ;Line entry ends by hitting return key. Return char not included in string (replaced by zero). 
0149 ;Backspace editing OK. No error checking. 
0149 ; 
0149 0e 00 get_line: ld c,000h ;line position 
014b 7c ld a,h ;put original buffer address in de 
014c 57 ld d,a ;after this don't need to preserve hl 
014d 7d ld a,l ;subroutines called don't use de 
014e 5f ld e,a 
014f db 03 get_line_next_char: in a,(3) ;get status 
0151 e6 02 and 002h ;check RxRDY bit 
0153 ca 4f 01 jp z,get_line_next_char ;not ready, loop 
0156 db 02 in a,(2) ;get char 
0158 fe 0d cp 00dh ;check if return 
015a c8 ret z ;yes, normal exit 
015b fe 7f cp 07fh ;check if backspace (VT102 keys) 
015d ca 71 01 jp z,get_line_backspace ;yes, jump to backspace routine 
0160 fe 08 cp 008h ;check if backspace (ANSI keys) 
0162 ca 71 01 jp z,get_line_backspace ;yes, jump to backspace 
0165 cd 09 01 call write_char ;put char on screen 
0168 12 ld (de),a ;store char in buffer 
0169 13 inc de ;point to next space in buffer 
016a 0c inc c ;inc counter 
016b 3e 00 ld a,000h 
016d 12 ld (de),a ;leaves a zero-terminated string in buffer

70



016e c3 4f 01 jp get_line_next_char 
0171 79 get_line_backspace: ld a,c ;check current position in line 
0172 fe 00 cp 000h ;at beginning of line? 
0174 ca 4f 01 jp z,get_line_next_char ;yes, ignore backspace, get next char 
0177 1b dec de ;no, erase char from buffer 
0178 0d dec c ;back up one 
0179 3e 00 ld a,000h ;replace last char with zero 
017b 12 ld (de),a 
017c 21 e1 03 ld hl,erase_char_string ;ANSI seq. to delete one char 
017f cd 15 01 call write_string ;backspace and erase char 
0182 c3 4f 01 jp get_line_next_char 
0185 ; 
0185 ;Creates a two-char hex string from the byte value passed in register A 
0185 ;Location to place string passed in HL 
0185 ;String is zero-terminated, stored in 3 locations starting at HL 
0185 ;Also uses registers b,d, and e 
0185 47 byte_to_hex_string: ld b,a ;store original byte 
0186 cb 3f srl a ;shift right 4 times, putting 
0188 cb 3f srl a ;high nybble in low-nybble spot 
018a cb 3f srl a ;and zeros in high-nybble spot 
018c cb 3f srl a 
018e 16 00 ld d,000h ;prepare for 16-bit addition 
0190 5f ld e,a ;de contains offset 
0191 e5 push hl ;temporarily store string target address 
0192 21 eb 01 ld hl,hex_char_table ;use char table to get high-nybble character 
0195 19 add hl,de ;add offset to start of table 
0196 7e ld a,(hl) ;get char 
0197 e1 pop hl ;get string target address 
0198 77 ld (hl),a ;store first char of string 
0199 23 inc hl ;point to next string target address 
019a 78 ld a,b ;get original byte back from reg b 
019b e6 0f and 00fh ;mask off high-nybble 
019d 5f ld e,a ;d still has 000h, now de has offset 
019e e5 push hl ;temp store string target address 
019f 21 eb 01 ld hl,hex_char_table ;start of table 
01a2 19 add hl,de ;add offset 
01a3 7e ld a,(hl) ;get char 

71



01a4 e1 pop hl ;get string target address 
01a5 77 ld (hl),a ;store second char of string 
01a6 23 inc hl ;point to third location 
01a7 3e 00 ld a,000h ;zero to terminate string 
01a9 77 ld (hl),a ;store the zero 
01aa c9 ret ;done 
01ab ; 
01ab ;Converts a single ASCII hex char to a nybble value 
01ab ;Pass char in reg A. Letter numerals must be upper case. 
01ab ;Return nybble value in low-order reg A with zeros in high-order nybble if no error. 
01ab ;Return 0ffh in reg A if error (char not a valid hex numeral). 
01ab ;Also uses b, c, and hl registers. 
01ab 21 eb 01 hex_char_to_nybble: ld hl,hex_char_table 
01ae 06 0f ld b,00fh ;no. of valid characters in table - 1. 
01b0 0e 00 ld c,000h ;will be nybble value 
01b2 be hex_to_nybble_loop: cp (hl) ;character match here? 
01b3 ca bf 01 jp z,hex_to_nybble_ok ;match found, exit 
01b6 05 dec b ;no match, check if at end of table 
01b7 fa c1 01 jp m,hex_to_nybble_err ;table limit exceded, exit with error 
01ba 0c inc c ;still inside table, continue search 
01bb 23 inc hl 
01bc c3 b2 01 jp hex_to_nybble_loop 
01bf 79 hex_to_nybble_ok: ld a,c ;put nybble value in a 
01c0 c9 ret 
01c1 3e ff hex_to_nybble_err: ld a,0ffh ;error value 
01c3 c9 ret 
01c4 ; 
01c4 ;Converts a hex character pair to a byte value 
01c4 ;Called with location of high-order char in HL 
01c4 ;If no error carry flag clear, returns with byte value in register A, and 
01c4 ;HL pointing to next mem location after char pair. 
01c4 ;If error (non-hex char) carry flag set, HL pointing to invalid char 
01c4 7e hex_to_byte: ld a,(hl) ;location of character pair 
01c5 e5 push hl ;store hl (hex_char_to_nybble uses it) 
01c6 cd ab 01 call hex_char_to_nybble 
01c9 e1 pop hl ;returns with nybble in a reg, or 0ffh if error 
01ca fe ff cp 0ffh ;non-hex character? 

72



01cc ca e9 01 jp z,hex_to_byte_err ;yes, exit with error 
01cf cb 27 sla a ;no, move low order nybble to high side 
01d1 cb 27 sla a 
01d3 cb 27 sla a 
01d5 cb 27 sla a 
01d7 57 ld d,a ;store high-nybble 
01d8 23 inc hl ;get next character of the pair 
01d9 7e ld a,(hl) 
01da e5 push hl ;store hl 
01db cd ab 01 call hex_char_to_nybble 
01de e1 pop hl 
01df fe ff cp 0ffh ;non-hex character? 
01e1 ca e9 01 jp z,hex_to_byte_err ;yes, exit with error 
01e4 b2 or d ;no, combine with high-nybble 
01e5 23 inc hl ;point to next memory location after char pair 
01e6 37 scf 
01e7 3f ccf ;no-error exit (carry = 0) 
01e8 c9 ret 
01e9 37 hex_to_byte_err: scf ;error, carry flag set 
01ea c9 ret 
01eb .. hex_char_table: defm "0123456789ABCDEF" ;ASCII hex table 
01fb ; 
01fb ;Subroutine to get a two-byte address from serial input. 
01fb ;Returns with address value in HL 
01fb ;Uses locations in RAM for buffer and variables 
01fb 21 88 0f address_entry: ld hl,buffer ;location for entered string 
01fe cd 49 01 call get_line ;returns with address string in buffer 
0201 21 88 0f ld hl,buffer ;location of stored address entry string 
0204 cd c4 01 call hex_to_byte ;will get high-order byte first 
0207 da 1d 02 jp c, address_entry_error ;if error, jump 
020a 32 81 0f ld (current_location+1),a ;store high-order byte, little-endian 
020d 21 8a 0f ld hl,buffer+2 ;point to low-order hex char pair 
0210 cd c4 01 call hex_to_byte ;get low-order byte 
0213 da 1d 02 jp c, address_entry_error ;jump if error 
0216 32 80 0f ld (current_location),a ;store low-order byte in lower memory 
0219 2a 80 0f ld hl,(current_location) ;put memory address in hl 
021c c9 ret 

73



021d 21 1f 04 address_entry_error: ld hl,address_error_msg 
0220 cd 15 01 call write_string 
0223 c3 fb 01 jp address_entry 
0226 ; 
0226 ;Subroutine to get a decimal string, return a word value 
0226 ;Calls decimal_string_to_word subroutine 
0226 21 88 0f decimal_entry: ld hl,buffer 
0229 cd 49 01 call get_line ;returns with DE pointing to terminating zero 
022c 21 88 0f ld hl,buffer 
022f cd 3c 02 call decimal_string_to_word 
0232 d0 ret nc ;no error, return with word in hl 
0233 21 93 04 ld hl,decimal_error_msg ;error, try again 
0236 cd 15 01 call write_string 
0239 c3 26 02 jp decimal_entry 
023c ; 
023c ;Subroutine to convert a decimal string to a word value 
023c ;Call with address of string in HL, pointer to end of string in DE 
023c ;Carry flag set if error (non-decimal char) 
023c ;Carry flag clear, word value in HL if no error. 
023c 42 decimal_string_to_word: ld b,d 
023d 4b ld c,e ;use BC as string pointer 
023e 22 80 0f ld (current_location),hl ;store addr. of start of buffer in RAM
0241 21 00 00 ld hl,000h ;starting value zero 
0244 22 86 0f ld (current_value),hl 
0247 21 8c 02 ld hl,decimal_place_value ;pointer to values 
024a 22 84 0f ld (value_pointer),hl 
024d 0b decimal_next_char: dec bc ;next char in string (moving R to L) 
024e 2a 80 0f ld hl,(current_location) ;check if at end of decimal string 
0251 37 scf
0252 3f ccf ;set carry to zero (clear) 
0253 ed 42 sbc hl,bc ;cont. if bc > or = hl (buffer address) 
0255 da 61 02 jp c,decimal_continue ;borrow means bc > hl 
0258 ca 61 02 jp z,decimal_continue ;z means bc = hl 
025b 2a 86 0f ld hl,(current_value) ;return if de < buffer address (no borrow)
025e 37 scf ;get value back from RAM variable 
025f 3f ccf 
0260 c9 ret ;return with carry clear, value in hl 

74



0261 0a decimal_continue: ld a,(bc) ;next char in string (right to left) 
0262 d6 30 sub 030h ;ASCII value of zero char 
0264 fa 87 02 jp m,decimal_error ;error if char value less than 030h 
0267 fe 0a cp 00ah ;error if byte value > or = 10 decimal 
0269 f2 87 02 jp p,decimal_error ;a reg now has value of decimal numeral 
026c 2a 84 0f ld hl,(value_pointer) ;get value to add an put in de 
026f 5e ld e,(hl) ;little-endian (low byte in low memory) 
0270 23 inc hl 
0271 56 ld d,(hl) 
0272 23 inc hl ;hl now points to next value 
0273 22 84 0f ld (value_pointer),hl 
0276 2a 86 0f ld hl,(current_value) ;get back current value 
0279 3d decimal_add: dec a ;add loop to increase total value 
027a fa 81 02 jp m,decimal_add_done ;end of multiplication 
027d 19 add hl,de 
027e c3 79 02 jp decimal_add 
0281 22 86 0f decimal_add_done: ld (current_value),hl 
0284 c3 4d 02 jp decimal_next_char 
0287 37 decimal_error: scf 
0288 c9 ret 
0289 c3 79 02 jp decimal_add 
028c 01 00 0a 00 64 00 e8 03 10 27 decimal_place_value: defw 1,10,100,1000,10000 
0296 ; 
0296 ;Memory dump 
0296 ;Displays a 256-byte block of memory in 16-byte rows. 
0296 ;Called with address of start of block in HL 
0296 22 80 0f memory_dump: ld (current_location),hl ;store address of block to be displayed 
0299 3e 00 ld a,000h 
029b 32 83 0f ld (byte_count),a ;initialize byte count 
029e 32 82 0f ld (line_count),a ;initialize line count 
02a1 c3 d6 02 jp dump_new_line 
02a4 2a 80 0f dump_next_byte: ld hl,(current_location) ;get byte address from storage, 
02a7 7e ld a,(hl) ;get byte to be converted to string 
02a8 23 inc hl ;increment address and 
02a9 22 80 0f ld (current_location),hl ;store back 
02ac 21 88 0f ld hl,buffer ;location to store string 
02af cd 85 01 call byte_to_hex_string ;convert 

75



02b2 21 88 0f ld hl,buffer ;display string 
02b5 cd 15 01 call write_string 
02b8 3a 83 0f ld a,(byte_count) ;next byte 
02bb 3c inc a 
02bc ca 06 03 jp z,dump_done ;stop when 256 bytes displayed 
02bf 32 83 0f ld (byte_count),a ;not finished yet, store 
02c2 3a 82 0f ld a,(line_count) ;end of line (16 characters)? 
02c5 fe 0f cp 00fh ;yes, start new line 
02c7 ca d6 02 jp z,dump_new_line 
02ca 3c inc a ;no, increment line count 
02cb 32 82 0f ld (line_count),a 
02ce 3e 20 ld a,020h ;print space 
02d0 cd 09 01 call write_char 
02d3 c3 a4 02 jp dump_next_byte ;continue 
02d6 3e 00 dump_new_line: ld a,000h ;reset line count to zero 
02d8 32 82 0f ld (line_count),a  
02db cd 86 03 call write_newline 
02de 2a 80 0f ld hl,(current_location) ;location of start of line 
02e1 7c ld a,h ;high byte of address 
02e2 21 88 0f ld hl, buffer 
02e5 cd 85 01 call byte_to_hex_string ;convert 
02e8 21 88 0f ld hl,buffer 
02eb cd 15 01 call write_string ;write high byte 
02ee 2a 80 0f ld hl,(current_location) 
02f1 7d ld a,l ;low byte of address 
02f2 21 88 0f ld hl, buffer 
02f5 cd 85 01 call byte_to_hex_string ;convert 
02f8 21 88 0f ld hl,buffer 
02fb cd 15 01 call write_string ;write low byte 
02fe 3e 20 ld a,020h ;space 
0300 cd 09 01 call write_char 
0303 c3 a4 02 jp dump_next_byte ;now write 16 bytes 
0306 3e 00 dump_done: ld a,000h 
0308 21 88 0f ld hl,buffer 
030b 77 ld (hl),a ;clear buffer of last string 
030c cd 86 03 call write_newline 
030f c9 ret 

76



0310 ; 
0310 ;Memory load 
0310 ;Loads RAM memory with bytes entered as hex characters 
0310 ;Called with address to start loading in HL 
0310 ;Displays entered data in 16-byte rows. 
0310 22 80 0f memory_load: ld (current_location),hl 
0313 21 4b 04 ld hl,data_entry_msg 
0316 cd 15 01 call write_string 
0319 c3 63 03 jp load_new_line 
031c cd 7c 03 load_next_char: call get_char 
031f fe 0d cp 00dh ;return char entered? 
0321 ca 78 03 jp z,load_done ;yes, quit 
0324 32 88 0f ld (buffer),a 
0327 cd 7c 03 call get_char 
032a fe 0d cp 00dh ;return? 
032c ca 78 03 jp z,load_done ;yes, quit 
032f 32 89 0f ld (buffer+1),a 
0332 21 88 0f ld hl,buffer 
0335 cd c4 01 call hex_to_byte 
0338 da 6e 03 jp c,load_data_entry_error ;non-hex character 
033b 2a 80 0f ld hl,(current_location) ;get byte address from storage, 
033e 77 ld (hl),a ;store byte 
033f 23 inc hl ;increment address and 
0340 22 80 0f ld (current_location),hl ;store back 
0343 3a 88 0f ld a,(buffer) 
0346 cd 09 01 call write_char 
0349 3a 89 0f ld a,(buffer+1) 
034c cd 09 01 call write_char 
034f 3a 82 0f ld a,(line_count) ;end of line (16 characters)? 
0352 fe 0f cp 00fh ;yes, start new line 
0354 ca 63 03 jp z,load_new_line 
0357 3c inc a ;no, increment line count 
0358 32 82 0f ld (line_count),a 
035b 3e 20 ld a,020h ;print space 
035d cd 09 01 call write_char 
0360 c3 1c 03 jp load_next_char ;continue 
0363 3e 00 load_new_line: ld a,000h ;reset line count to zero 

77



0365 32 82 0f ld (line_count),a 
0368 cd 86 03 call write_newline 
036b c3 1c 03 jp load_next_char ;continue 
036e cd 86 03 load_data_entry_error: call write_newline 
0371 21 78 04 ld hl,data_error_msg 
0374 cd 15 01 call write_string 
0377 c9 ret 
0378 cd 86 03 load_done: call write_newline 
037b c9 ret 
037c ; 
037c ;Get one ASCII character from the serial port. 
037c ;Returns with char in A reg. No error checking. 
037c db 03 get_char: in a,(3) ;get status 
037e e6 02 and 002h ;check RxRDY bit 
0380 ca 7c 03 jp z,get_char ;not ready, loop 
0383 db 02 in a,(2) ;get char 
0385 c9 ret 
0386 ; 
0386 ;Subroutine to start a new line 
0386 3e 0d write_newline: ld a,00dh ;ASCII carriage return character 
0388 cd 09 01 call write_char 
038b 3e 0a ld a,00ah ;new line (line feed) character 
038d cd 09 01 call write_char 
0390 c9 ret 
0391 ; 
0391 ;Strings used in subroutines 
0391 .. 00 length_entry_string: defm "Enter length of file to load (decimal): ",0 
03ba .. 00 dump_entry_string: defm "Enter no. of bytes to dump (decimal): ",0 
03e1 08 1b .. 00 erase_char_string: defm 008h,01bh,"[K",000h ;ANSI seq. for BS, erase to end of line. 
03e6 .. 00 address_entry_msg: defm "Enter 4-digit hex address (use upper-case A through F): ",0 
041f .. 00 address_error_msg: defm "\r\nError: invalid hex character, try again: ",0 
044b .. 00 data_entry_msg: defm "Enter hex bytes, hit return when finished.\r\n",0 
0478 .. 00 data_error_msg: defm "Error: invalid hex byte.\r\n",0 
0493 .. 00 decimal_error_msg: defm "\r\nError: invalid decimal number, try again: ",0 
04c0 ; 
04c0 ;Simple monitor program for CPUville Z80 computer with serial interface. 
04c0 cd 00 01 monitor_cold_start: call initialize_port 

78



04c3 21 da 05 ld hl,monitor_message 
04c6 cd 15 01 call write_string 
04c9 cd 86 03 monitor_warm_start: call write_newline ;return here to avoid re-initialization of port 
04cc 3e 3e ld a,03eh ;prompt (cursor symbol)
04ce cd 09 01 call write_char 
04d1 21 88 0f ld hl,buffer 
04d4 cd 49 01 call get_line ;get monitor input string (command) 
04d7 cd 86 03 call write_newline 
04da cd de 04 call parse ;interpret command, ret. With jump addr. in HL 
04dd e9 jp (hl) 
04de ; 
04de ;Parses an input line stored in buffer for available commands as described in parse table. 
04de ;Returns with address of jump to action for the command in HL 
04de 01 9f 07 parse: ld bc,parse_table ;bc is pointer to parse_table 
04e1 0a parse_start: ld a,(bc) ;get pointer to match string from parse table 
04e2 5f ld e,a 
04e3 03 inc bc 
04e4 0a ld a,(bc)  
04e5 57 ld d,a ;de will is pointer to strings for matching 
04e6 1a ld a,(de) ;get first char from match string 
04e7 f6 00 or 000h ;zero? 
04e9 ca 04 05 jp z,parser_exit ;yes, exit no_match 
04ec 21 88 0f ld hl,buffer ;no, parse input string  
04ef be match_loop: cp (hl) ;compare buffer char with match string char 
04f0 c2 fe 04 jp nz,no_match ;no match, go to next match string 
04f3 f6 00 or 000h ;end of strings (zero)? 
04f5 ca 04 05 jp z,parser_exit ;yes, matching string found 
04f8 13 inc de ;match so far, point to next char
04f9 1a ld a,(de) ;get next character from match string 
04fa 23 inc hl ;and point to next char in input string 
04fb c3 ef 04 jp match_loop ;check for match 
04fe 03 no_match: inc bc ;skip over jump target to 
04ff 03 inc bc 
0500 03 inc bc ;get address of next matching string 
0501 c3 e1 04 jp parse_start 
0504 03 parser_exit: inc bc ;skip to address of jump for match 
0505 0a ld a,(bc) 

79



0506 6f ld l,a 
0507 03 inc bc 
0508 0a ld a,(bc) 
0509 67 ld h,a ;returns with jump address in hl 
050a c9 ret 
050b ; 
050b ;Actions to be taken on match 
050b ; 
050b ;Memory dump program 
050b ;Input 4-digit hexadecimal address 
050b ;Calls memory_dump subroutine 
050b 21 4e 06 dump_jump: ld hl,dump_message ;Display greeting 
050e cd 15 01 call write_string 
0511 21 e6 03 ld hl,address_entry_msg ;get ready to get address 
0514 cd 15 01 call write_string 
0517 cd fb 01 call address_entry ;returns with address in HL 
051a cd 86 03 call write_newline 
051d cd 96 02 call memory_dump 
0520 c3 c9 04 jp monitor_warm_start 
0523 ; 
0523 ;Hex loader, displays formatted input 
0523 21 75 06 load_jump: ld hl,load_message ;Display greeting 
0526 cd 15 01 call write_string ;get address to load 
0529 21 e6 03 ld hl,address_entry_msg ;get ready to get address 
052c cd 15 01 call write_string 
052f cd fb 01 call address_entry 
0532 cd 86 03 call write_newline 
0535 cd 10 03 call memory_load 
0538 c3 c9 04 jp monitor_warm_start 
053b ; 
053b ;Jump and run do the same thing: get an address and jump to it. 
053b 21 a4 06 run_jump: ld hl,run_message ;Display greeting 
053e cd 15 01 call write_string 
0541 21 e6 03 ld hl,address_entry_msg ;get ready to get address 
0544 cd 15 01 call write_string 
0547 cd fb 01 call address_entry 
054a e9 jp (hl) 

80



054b ; 
054b ;Help and ? do the same thing, display the available commands 
054b 21 24 06 help_jump: ld hl,help_message 
054e cd 15 01 call write_string 
0551 01 9f 07 ld bc,parse_table ;table with pointers to command strings 
0554 0a help_loop: ld a,(bc) ;displays the strings for matching commands, 
0555 6f ld l,a ;getting the string addresses from the 
0556 03 inc bc ;parse table 
0557 0a ld a,(bc) ;pass address of string to hl through a reg 
0558 67 ld h,a 
0559 7e ld a,(hl) ;hl now points to start of match string 
055a f6 00 or 000h ;exit if no_match string 
055c ca 6f 05 jp z,help_done 
055f c5 push bc ;write_char uses b register 
0560 3e 20 ld a,020h ;space char 
0562 cd 09 01 call write_char 
0565 c1 pop bc 
0566 cd 15 01 call write_string ;writes match string 
0569 03 inc bc ;pass over jump address in table 
056a 03 inc bc 
056b 03 inc bc 
056c c3 54 05 jp help_loop 
056f c3 c9 04 help_done: jp monitor_warm_start 
0572 ; 
0572 ;Binary file load. Need both address to load and length of file 
0572 21 d9 06 bload_jump: ld hl,bload_message 
0575 cd 15 01 call write_string 
0578 21 e6 03 ld hl,address_entry_msg 
057b cd 15 01 call write_string 
057e cd fb 01 call address_entry 
0581 cd 86 03 call write_newline 
0584 e5 push hl 
0585 21 91 03 ld hl,length_entry_string 
0588 cd 15 01 call write_string 
058b cd 26 02 call decimal_entry 
058e 44 ld b,h 
058f 4d ld c,l 

81



0590 21 fc 06 ld hl,bload_ready_message 
0593 cd 15 01 call write_string 
0596 e1 pop hl 
0597 cd 25 01 call bload 
059a c3 c9 04 jp monitor_warm_start 
059d ; 
059d ;Binary memory dump. Need address of start of dump and no. bytes 
059d 21 20 07 bdump_jump: ld hl,bdump_message 
05a0 cd 15 01 call write_string 
05a3 21 e6 03 ld hl,address_entry_msg 
05a6 cd 15 01 call write_string 
05a9 cd fb 01 call address_entry 
05ac cd 86 03 call write_newline 
05af e5 push hl 
05b0 21 ba 03 ld hl,dump_entry_string 
05b3 cd 15 01 call write_string 
05b6 cd 26 02 call decimal_entry 
05b9 44 ld b,h 
05ba 4d ld c,l 
05bb 21 50 07 ld hl,bdump_ready_message 
05be cd 15 01 call write_string 
05c1 cd 7c 03 call get_char 
05c4 e1 pop hl 
05c5 cd 37 01 call bdump 
05c8 c3 c9 04 jp monitor_warm_start 
05cb ;Prints message for no match to entered command 
05cb 21 03 06 no_match_jump: ld hl,no_match_message 
05ce cd 15 01 call write_string 
05d1 21 88 0f ld hl, buffer 
05d4 cd 15 01 call write_string 
05d7 c3 c9 04 jp monitor_warm_start 
05da ; 
05da ;Monitor data structures: 
05da ; 
05da .. 00 monitor_message: defm "\r\nCPUville Z80 computer, ROM version 7\r\n",0 
0603 .. 00 no_match_message: defm "No match found for input string ",0 
0624 .. 00 help_message: defm "The following commands are implemented:\r\n",0 

82



064e .. 00 dump_message: defm "Displays a 256-byte block of memory.\r\n",0 
0675 .. 00 load_message: defm "Enter hex bytes starting at memory location.\r\n",0 
06a4 .. 00 run_message: defm "Will jump to (execute) program at address entered.\r\n",0 
06d9 .. 00 bload_message: defm "Loads a binary file into memory.\r\n",0 
06fc .. 00 bload_ready_message: defm "\n\rReady to receive, start transfer.",0 
0720 .. 00 bdump_message: defm "Dumps binary data from memory to serial port.\r\n",0 
0750 .. 00 bdump_ready_message: defm "\n\rReady to send, hit any key to start.",0 
0777 ;Strings for matching: 
0777 .. 00 dump_string: defm "dump",0 
077c .. 00 load_string: defm "load",0 
0781 .. 00 jump_string: defm "jump",0 
0786 .. 00 run_string: defm "run",0 
078a .. 00 question_string: defm "?",0 
078c .. 00 help_string: defm "help",0 
0791 .. 00 bload_string: defm "bload",0 
0797 .. 00 bdump_string: defm "bdump",0 
079d 00 00 no_match_string: defm 0,0 
079f ;Table for matching strings to jumps 
079f 77 07 0b 05 7c 07 23 05 parse_table: defw dump_string,dump_jump,load_string,load_jump 
07a7 81 07 3b 05 86 07 3b 05 defw jump_string,run_jump,run_string,run_jump 
07af 8a 07 4b 05 8c 07 4b 05 defw question_string,help_jump,help_string,help_jump 
07b7 91 07 72 05 97 07 9d 05 defw bload_string,bload_jump,bdump_string,bdump_jump 
07bf 9d 07 cb 05 defw no_match_string,no_match_jump 
07c3  
# End of file 2K_ROM_7.asm
07c3

83



# File RAM_test_1.asm
0000 ;Program to test Program Loader 
0000 ;Simple output and halt 
0000 org 0800h ;Address of start of RAM 
0800 3e 05 ld a,005h ;Bit pattern for port 0 
0802 d3 00 out (000h),a ;Output pattern to port 
0804 3e 0a ld a,000ah ;Bit pattern for port 1 
0806 d3 01 out (001h),a ;Output pattern to port 
0808 76 halt 
# End of file RAM_test_1.asm

# File Highest_factor_2.asm
0000 ;Highest Factor program 
0000 ;Calculates highest factor of a one-byte number 
0000 ;read from input port 0, and displays it on 
0000 ;output port 0. Displays the number itself  
0000 ;if it is a prime number. 
0000 org 00800h ;Start of RAM 
0800 3e 00 Program_start: ld a,000h ;Clear output ports 
0802 d3 00 out (000h),a 
0804 d3 01 out (001h),a 
0806 db 00 Get_number: in a,(000h) ;Get one byte number to factor
0808 32 40 08 ld (Original_number),a ;Store original number 
080b 32 41 08 ld (Test_factor),a 
080e 3a 41 08 Factor_test: ld a,(Test_factor) 
0811 3d dec a 
0812 ca 06 08 jp z,Get_number ;Don't try to divide by 0 
0815 fe 01 cp 001h 
0817 ca 2b 08 jp z,Prime ;No more factors to test 
081a 32 41 08 ld (Test_factor),a ;Store factor for next test 
081d 47 ld b,a 
081e 3a 40 08 ld a,(Original_number) 
0821 90 Factor_loop: sub a,b ;Serial subtraction for division 
0822 fa 0e 08 jp m,Factor_test ;Too far, try next factor 
0825 ca 35 08 jp z,Factor ;Exact divisor = factor 
0828 c3 21 08 jp Factor_loop ;Register a still positive, keep subtracting 
082b 3a 40 08 Prime: ld a,(Original_number) 

84



082e d3 00 out (000h),a 
0830 d3 01 out (001h),a 
0832 c3 06 08 jp Get_number 
0835 3a 40 08 Factor: ld a,(Original_number) 
0838 d3 00 out (000h),a 
083a 78 ld a,b 
083b d3 01 out (001h),a 
083d c3 06 08 jp Get_number 
0840 ;Variables 
0840 00 Original_number: defb 000h 
0841 00 Test_factor: defb 000h 
0842  
# End of file Highest_factor_2.asm

# File adder_1.asm
0000 org 0800h ;Start of RAM
0800 3e 00 Add_Program: ld a,00h ;Clear outputs to start 
0802 d3 00 out (0),a 
0804 d3 01 out (1),a 
0806 db 00 Get_addends: in a,(0) ;Get 8-bit addends 
0808 47 ld b,a ;Store one in B register 
0809 db 01 in a,(1) ;Get the other 
080b 80 add a,b ;Add them 
080c d3 00 out (0),a ;Output the result 
080e 3e 00 ld a,00h ;Clear port 1 LEDs 
0810 d3 01 out (1),a  
0812 d2 06 08 jp nc,Get_addends ;All done if no carry 
0815 3e 01 ld a,01h ;If carry, put 1 on port 1 
0817 d3 01 out (1),a 
0819 c3 06 08 jp Get_addends ;Start again 
# End of file adder_1.asm

85



Table for hand assembling a program

Memory address
(hexadecimal)

Machine code
(hexadecimal)

Label Assembly language Comment

0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
080A
080B
080C
080D
080E
080F
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819

86



081A
081B
081C
081D
081E
081F
0820
0821
0822
0823
0824
0825
0826
0827
0828
0829
082A
082B
082C
082D
082E
082F
0830

87



Resources

Web Sites

“Home of the Z80 CPU”. Lots of resources including links to assemblers. http://www.z80.info/

"8080/Z80 Instruction Set”. Web page with complete operation codes and mnemonics for Z80 
assembly language. http://nemesis.lonestar.org/computers/tandy/software/apps/m4/qd/opcodes.html

"CPU World Z80 Page”. Information about Z80 from different manufacturers around the world, with 
photos. http://www.cpu-world.com/CPUs/Z80/index.html

"Z80 Family CPU User Manual”. Full pdf of the compete Z80 reference from Zilog, 1.8 Mb. 
http://www.zilog.com/docs/z80/um0080.pdf

"SDCC – Small Device C Compiler” Want to program the Z80 using C instead of assembly language? 
Get this compiler. http://sdcc.sourceforge.net/

"The Z80 Microprocessor”. An old Sourceforge page with information about the Z80, including links to
instuction set table. http://penguicon.sourceforge.net/comphist/links/cpm/z80.html

“Z80 Instruction Set (Complete)” Good web page of the Z80 instruction set. http://www.ftp83plus.net/
Tutorials/z80inset_fullA.html

Books

Z80 Assembly Language Programming by Lance Leventhal, 1979, Osborne/McGraw-Hill, Berkeley, 
California. The book I used to learn Z80, very complete. 

Z80 Microprocessor Family User's Manual, 1995, Zilog Inc, Campbell, California. Complete reference.
You can get this from the Zilog web side (see above).

Build Your Own Z80 Computer by Steve Ciarcia, 1981, BYTE Books/McGraw-Hill, Peterborough, 
New Hampshire. The classic book from which I got most of the information used to design my 
computer. You can view the book for free on Google Books.

Z-80 Microcomputer Design Projects by William Barden, Jr, 1980, Howard W. Sams & Co., Inc., 
Indianapolis, Indiana. Lots of additional information about small Z80 systems.

Engineer's Notebook II: A Handbook of Integrated Circuit Applications by Forrest M. Mims, III, 1982, 

88

http://penguicon.sourceforge.net/comphist/links/cpm/z80.html
http://sdcc.sourceforge.net/
http://www.zilog.com/docs/z80/um0080.pdf
http://www.cpu-world.com/CPUs/Z80/index.html
http://nemesis.lonestar.org/computers/tandy/software/apps/m4/qd/opcodes.html
http://www.z80.info/


Radio Shack. My reference for designing the digital support circuits for the computer, display, and 
logic probe kits. This is probably out of print, but look for other books by this author, they will always 
be well-written.

Computer Organization & Design: The Hardware/Software Interface by David A. Patterson and John L.
Hennessy, 1998, Morgan Kaufmann Publishers, Inc., San Francisco, California. Complete, college-
level textbook by the designer of the MIPS family of microprocessors. This book taught me how to 
build a processor (see my web site main page, cpuville.com).

89



Supplementary Materials: Building by Sections

If you have a logic probe, you can make the kit in sections, and test the function of each section before 
you go on to the next one. Building this way is a little more educational, but it is a little more difficult, 
because you will put in some tall parts at the start. That makes it harder to solder in the shorter parts 
later. But, you can use a little folded paper or styrofoam to hold the parts against the board when it is 
upside down, or use a little solder drop to hold a part in place while you solder the other pins (see 
Soldering Tips). Here are the sections:

1. Power section and display connectors.

You might have to apply some force on the power jack pins to get them to go through the 
holes. When you solder it, just fill up the holes with solder. (I made the board with round 
holes instead of slots because holes are about $3 cheaper).

90



If you bought a CPUville logic probe, you can solder in the connector and capacitor at the 
right upper corner and plug it in.

Apply +5V Regulated DC16 to the board. With a logic probe, you can check that many pads 
on the board now have either high (+5V) or low (ground) levels on them.

16 This project requires a +5V regulated DC power supply capable of at least 2000 mA (i.e., a 10 watt power supply). An 
unregulated power supply will not work properly and may damage the system.

91



2. Clock and reset section.

After finishing this, you can use the switches to select either the fast or slow clock for the 
Z80. The Z80 clock input is pin 6. Test pin 6 with the logic probe with the slow clock 
selected, and you will see it cycling. (The logic probe will not detect the fast clock with the 
current board configuration).

92



When the Reset switch is on, the Reset input on the Z80 (pin 26) should be low (ground), 
and when the Reset switch is off, the Reset input should be high (+5V). If you have built the
display board, you can solder in the sockets (IDC1 and IDC2), connect it, and see activity 
on the Clock and Reset LEDs.

3. Z80 and buffers.

After finishing this section, you can actually run the Z80. Select the slow clock, and set the 
Reset switch off. Since the Z80 is not connected to the memory yet it won't be doing 
anything interesting, but it won't damage it to run it. The Address and Data pins should be 
cycling when it is running.

93



You can look at the other pins, and you should see this:

Unused inputs pins 16, 17, 24 and 25: High
Unused outputs pins 27 and 28:  Cycling
Unused outputs pins 18 and 23: High
Control pins 19 and 21: Cycling
Control pins 20 and 22: High most of the time, might cycle occasionally
Clock pin 6: Cycling
Reset pin 26: High
Vcc (power in) pin 11: High
Gnd (power in) pin 29: Low

The address, data, and control bus buffers should show the same behavior on their output 
pins. If you put the processor into reset the cycling should stop (except for the clock signal).

94



4. Memory section.

This section has the 2K EPROM with the window in it, and the 2K static RAM, as well as 
the decoding logic (explained in the section on the schematics). The JP1 jumper is for 
disabling the on-board memory in case you want to make an add-on board with its own 
memory. If you run the computer now, you won't notice much difference from running the 
CPU only, except you might have more activity on the I/O Req and Write pins (20 and 22).

95



5. Input ports section.

This section has the input port switches, resistor networks, buffers that act as gateways to 
the data bus, the port logic, and a jumper. The JP2 jumper disables the on-board input and 
output ports in case you want to make an add-on board with its own ports. Be careful to 
solder the resistor networks in with the marked pin to the RIGHT:

96



6. Output ports section.

This section includes the output port LEDs, current-limiting resistors, and the latches that grab and hold
the data for display. Make sure you put the LEDs in with the short lead and flat side of the flange to the 
RIGHT.

97


	Introduction
	Building Tips
	Building the Logic Probe
	Building the Display
	Building the Computer
	Binary, briefly
	Testing the Computer
	Z80 Programming
	Computers in General
	The CPUville Z80 Computer System
	Computer block diagram
	Computer Schematics and Explanations
	Clocks and Reset
	Connectors
	Z80 CPU and Buffers
	Control Bus Buffer and Decoders
	2K ROM
	2K RAM
	Input Ports
	Output Ports

	Display Schematic and Explanation
	Logic Probe Schematic and Explanation
	Appendix
	Logic Probe parts organizer and list
	Display parts organizer and list
	Computer parts organizer and list
	Program Listings
	Table for hand assembling a program

	Resources
	Web Sites
	Books

	Supplementary Materials: Building by Sections

