
CPUville 8-bit Processor Kit Instruction Manual

By Donn Stewart

© 2019 by Donn Stewart

1

Table of Contents
Introduction..5
Building Tips..6
Building the ALU...10
Building the Main Board..12
Building the Control Board..15
Assembling the 8-bit Processor..18
Control Board Switches...21
Using the 8-bit Processor with a 4K System..21
Using the 8-bit Processor with a 64K System..23

Monitor commands..26
1=restart..26
2=dump...26
3=run...27
4=load...27
5=bload...29

Connecting a disk drive...33
Introduction to Programming for the 8-bit Processor..33
The Instruction Set...34

ADC – add with carry...35
ADCIM – add with carry, immediate..37
ADD – add memory data to the accumulator..38
ADDIM – add immediate data to the accumulator...39
AND – bitwise logical AND of memory data with the accumulator..40
ANDIM – bitwise logical AND of immediate data with the accumulator..41
CCF – clear carry flag...42
CMP – compare...43
DEC – decrement accumulator..44
IN – load accumulator with data from an input port...45
INC – increment accumulator...46
JMP – jump unconditional...47
JPC – jump if carry..48
JPM – jump if minus...49
JPZ – jump if zero...50
LDI – load accumulator immediate...51
LDM – load accumulator from memory...52
NOP – no operation...53
NOT – bitwise invert (ones-complement) accumulator..54
OR – bitwise logical OR of memory data with accumulator..55
ORIM – bitwise logical OR of immediate data with accumulator..56
OUT – load output port with accumulator..57
SBB – subtract memory and borrow from accumulator..58
SBBIM – subtract immediate data and borrow from accumulator...60
SCF – set carry flag...62
STM – store accumulator to memory..63

2

SUB – subtract memory from accumulator...64
SUBIM – subtract immediate data from accumulator...66
XOR – bitwise exclusive OR of memory with accumulator...68
XORIM – bitwise exclusive-OR of immediate data with accumulator..69

Using TASM..70
Schematics and Explanations...73

Overall design of the processor data path...74
Main board (data path) schematics..75

Display connector...76
Program counter..77
Zero flag logic...78
Address source multiplexer..79
Instruction register..80
Data-out buffer..81
Control connector...81
ALU op source multiplexer, carry flip-flop, and ALU connector..82
Accumulator source multiplexer and accumulator...83
ALU B source multiplexer..84
System connector..85

ALU schematics..85
ALU connector...87
Carry-out logic..88
ALU logic...88
B inverter and multiplexer..89
Carry-in multiplexer...89
Borrow multiplexer...90
Adder..90
Borrow adder..91
AND..92
OR...93
XOR..94
NOT..95
ALU output multiplexer...96

Control board schematic..97
State register...99
Next-state logic...100
Front panel connector...101
State decoder...101
Control connector...102
Control logic (portion)..102
Clocks and reset..103
Clock delay...103
Write signal machine..104
Register write pulse machine..104

Appendix..105
ALU parts organizer..105
ALU parts list..106

3

Main board parts organizer..107
Main board parts list..108
Control board parts organizer..109
Control board parts list..110
ALU carry-out logic explanation...111
ALU logic explanation..111
Next-state logic explanation..112
Control signals logic explanation..115
System write signal timing..117
Register write pulse timing..119
Special Programming Techniques...120

Indexing..120
Subroutines...121

Instruction set table, sorted by opcode..124
Instruction set table, sorted by mnemonic...125

Selected Program Listings...126
ROM for 4K systems...126
adder..131
ROM System Monitor...132

4

Introduction
The CPUville 8-bit processor is a general purpose, accumulator-memory computer processor in kit
form. The processor is implemented on three 6.5 by 4.5 inch two-layer circuit boards using 74LS series
TTL integrated circuits. The processor bus architecture allows it to replace the Z80 processor in the
CPUville Original and Single-board Z80 computers. An accessory register display, together with the
slow and single-step system clocks on the processor control board, allow the hobbyist or student to
fully examine the inner workings of the processor. This processor kit is intended for educational and
recreational purposes. It should not be used to control processes or machinery where system failure
would result in damage or injury.

The three boards that make up the processor are the arithmetic-logic unit (ALU), the main board, and
the control board. The ALU is a logic circuit that performs addition, subtraction, and logical operations
on 8-bit operands. The main board is the processor data path which has the processor registers and
multiplexers that direct the data to the places appropriate to the instruction being executed. The control
board has the logic circuits that interpret the program instructions and provide the multiplexer control
signals and register write signals for the data path. Together these three boards make up the processor.
The processor together with a system board, which has memory and input/output ports, make up a
complete computer system.

The processor instruction set consists of 30 instructions, explained in detail in this manual in the
Instruction Set and Programming sections. The processor has two addressing modes, direct (operand in
the instruction) and memory (operand in a memory location referenced by the instruction). It can access
directly a 64K memory space. The processor can run at a clock speed of up to 2 MHz, and can perform
400,000 additions per second.

The processor was designed with simplicity as a main goal. The entire design of the processor is open
for study, and the schematics are complete. It is my hope that anyone studying this processor will be
able to understand how it works, and by extension, how more complex processors work. Admittedly the
processor lacks many of the features of modern processors, but those features add complexity, and the
functionality of most of those features can be implemented in software. For example, this processor
does not have registers for address indexing, but indexing can be done by placing an instruction in
RAM and indexing the instruction’s address operand there (see the Special Programming Techniques
section in the Appendix).

I hope you enjoy making and using this processor kit. I have enjoyed designing it.

--Donn Stewart, January 2019

5

Building Tips1

Thanks for buying a CPUville kit. Here is what you need to build it:

1. Soldering iron. I strongly recommend a pencil-tip type of iron, from 15 to 30 watts.
2. Solder. Use rosin core solder. Lead-free or lead-containing solders are fine. I have been using

Radio Shack Standard Rosin Core Solder, 60/40, 0.032 in diameter. Use eye protection when
soldering, and be careful, you can get nasty burns even from a 15-watt iron.

3. Tools. You will need needle nose pliers to bend leads. You will need wire cutters to cut leads
after soldering, and possibly wire strippers if you want to solder power wires directly to the
board. I find a small pen knife useful in prying chips or connectors from their sockets. A
voltmeter is useful for testing continuity and voltage polarity. A logic probe is useful for
checking voltages on IC pins while the computer is running, to track down signal connection
problems.

4. De-soldering tool. Hopefully you will not need to remove any parts from the board, but if you
do, some kind of desoldering tool is needed. I use a “Soldapullt”, a kind of spring-loaded
syringe that aspirates melted solder quickly. Despite using this, I destroy about half the parts I
try to take off, so it is good to be careful when placing the parts in the first place, so you don't
have to remove them later.

Soldering tips:

1. Before you plug in the iron, clean the tip with something mildly abrasive, like steel wool or a
3M Scotchbrite pad (plain ones, not the ones with soap in them).

2. Let the iron get hot, then tin the tip with lots of solder (let it drip off some). With a fresh coat of
shiny solder the heat transfer is best.

3. Wipe the tinned tip on a wet sponge briefly to get off excess solder. Wipe it from time to time
while soldering, so you don't get a big solder drop on it.

4. All CPUville kits have through-hole parts (no surface-mounted devices). This makes it easy for
even inexperienced hobbyists to be successful.

5. The basic technique of soldering a through-hole lead is as follows:
1. Apply the soldering iron tip so that it heats both the lead and the pad on the circuit board
2. Wait a few seconds (I count to 4), then apply the solder.
3. Apply only the minimum amount of solder to make a small cones around the leads, like this:

1 These are generic building tips that apply to all the CPUville kits. The photos here may or may not be of the kit(s) you
have purchased.

6

This is only about 1/8th inch of the 0.032 inch diameter solder that I use. If you keep
applying the solder, it will drip down the lead to the other side of the board, and you can get
shorts. Plus, it looks bad.

4. Remove the solder first, wait a few seconds, then remove the soldering iron. Pull the iron tip
away at a low angle so as not to make a solder blob.

5. There are some pads with connections to large copper zones (ground planes) like these:

These require extra heat to make good connections, because the zones wick away the
soldering iron heat. You will usually need to let a 15-watt iron rest on the pin and pad for
more time before applying the solder (count to 10). You also can use a more powerful (30
watt) soldering iron.

6. The three main errors one might make are these:
1. Cold joint. This happens when the iron heats only the pad, leaving the lead cold. The

solder sticks to the pad, but there is no electrical connection with the lead. If this
happens, you can usually just re-heat the joint with the soldering iron in the proper way
(both the lead and the pad), and the electrical connection will be made.

2. Solder blob. This happens if you heat the lead and not the pad, or if you pull the iron up
the lead, dragging solder with it. If this happens, you can probably pick up the blob with
the hot soldering iron tip, and either wipe it off on your sponge and start again, or carry
it down to the joint and make a proper connection.

3. Solder bridge. This happens if you use too much solder, and if flows over to another
pad. This is bad, because it causes a short circuit, and can damage parts.

If this happens, you have to remove the solder with a desoldering tool, and re-do the joints.

Other tips:

1. Be careful not to damage the traces on the board. They are very thin copper films, just under
a thin plastic layer of solder mask (the green stuff). If you plop the board down on a hard

7

surface that has hard debris on it (like ICs, screws etc.) it is easy to cut a trace. Such damage
can be fixed, if you can find it, but try to avoid it in the first place.

2. When soldering multi-pin components, like the ICs or IC sockets, it is important to hold the
parts against the board when soldering so they aren't “up in the air” when the solder
hardens. The connections might work OK, but it looks terrible. If you make a lot of
connections on a part while it is up in the air it is very difficult to get it to sit back down,
because you cannot heat all the connections at the same time. To prevent this, I like to solder
the lowest profile parts first, like resistors, because when the board is upside down they will
be pressed against the top of the board by the surface of the table I am working on. Then, I
solder the taller parts, like the LEDs, sockets, and capacitors. Sometimes, I need to put
something beneath the component to support it while the board is upside down to be
soldered, like a rolled-up piece of paper or the handle of a tool. Another technique is to put a
tiny drop of solder on the tip of the iron, press the part against the board with one hand, and
apply the drop of solder to one of the leads. When the solder hardens, it holds the chip in
place. Solder the other leads, then come back and re-solder the one you used to hold it. It is
good to re-solder it because the original solder drop will not have had any rosin in it. The
rosin in the cold solder helps the electrical connection to be clean.

3. The components with long bendable leads (capacitors, resistors, and LEDs) can be inserted,
and then the leads bent to hold them in place:

4. You might have to bend the leads on components, ICs or IC sockets to get them to fit into
the holes on the boards. For an IC, place the part on the table and bend the leads all at once,
like this:

8

Bending the leads one-by-one or all together with the needle nose pliers doesn't work as
well for some reason.
Also, some components have leads bent outward to fit in a certain printed circuit board
footprint, but will fit a smaller footprint if you bend the leads in with a needle-nosed pliers.
Here is a tantalum capacitor, one with wide leads, the other with narrow leads, from bending
the wide leads in:

5. After you have soldered a row or two check the joints with a magnifying glass. These kits
have small leads and pads, and it can be hard to see if you got the solder on correctly by
naked eye. You can miss tiny hair-like solder bridges unless you inspect carefully. It is good
to brush off the bottom of the board from time to time with something like a dry paintbrush
or toothbrush, to get off any small solder drops that are sitting there. After you are finished,
wiping with an alcohol-soaked rag will get off rosin splatter.

6. The connectors, like the 40-pin IDE drive connector and the system connector some kits
have pins that are a little more massive than the IC socket or component pins. This means
that more time, or perhaps more wattage, will be required to heat these pins with the
soldering iron, to ensure good electrical connections.

9

Building the ALU

Print out the ALU Parts Organizer (in the Appendix) and put the parts on the organizer to make sure
you have them all, and to get familiar with them:

10

Once you have checked the parts you can start to solder them onto the circuit board.

The easiest way to solder the components is to start with the shortest (parts that lie closest to the board)
and proceed to the tallest. The order is resistors, sockets, LEDs, capacitors, and the 40-pin connectors.
Some components need to be oriented properly, as described below.

1. The resistors can be soldered first. They do not have to be oriented.

2. The IC sockets are next. They do not need to be oriented.

3. The LED is next. The cathode, which is side with the shorter lead, and the flat side of the plastic
base, is oriented toward the right. There is a small “K” on the circuit board symbol by the
cathode hole:

4. The bypass capacitors are next. They do not need to be oriented.

5. The 40-pin ALU connector is next. No orientation is necessary, but it has fairly large leads and
may require more time or soldering iron wattage to solder.

6. Once you have finished soldering all the parts on the board, inspect the board to make sure there
are no solder bridges or unsoldered pins. Lightly brush the back of the board with an old
toothbrush or paintbrush to clear off loose debris or tiny solder hairs. You can wipe the back of
the board with a cloth soaked in alcohol to remove small drops of rosin flux that have spattered
about.

Hold the finished board against a bright light. If you can see light coming through a pin hole, go
back and solder it again, to make sure you have a good electrical connection. This does not

11

apply to the vias, the plated holes where a trace goes from one side of the board to the other.
These can be left open.

See the section “Assembling the 8-bit Processor” for instructions on inserting the ICs.

Building the Main Board

Print out the Main Board Parts Organizer (in the Appendix) and put the parts on the organizer to make
sure you have them all, and to get familiar with them:

12

Once you have checked the parts you can start to solder them onto the circuit board.

The easiest way to solder the components is to start with the shortest (parts that lie closest to the board)
and proceed to the tallest. The order is resistors, sockets, LED, capacitors, and the 40-pin and 50-pin
connectors. One 40-pin header receptacle is soldered on the back of the board. Some components need
to be oriented properly, as described below.

1. The resistors can be soldered first. They do not have to be oriented.

2. The IC sockets are next. They do not need to be oriented.

3. The LED is next. The cathode, which is side with the shorter lead, and the flat side of the plastic
base, is oriented toward the right. There is a small “K” on the circuit board symbol by the
cathode hole:

13

4. The bypass capacitors are next. They do not need to be oriented.

5. The 40-pin control and system connectors, and the 50-pin register display connectors are next.
No orientation is necessary, but these connectors have fairly large leads and may require more
time and/or soldering iron wattage to solder.

6. The 40-pin ALU header receptacle is soldered to the back of the board. Apply solder to the pads
and pins on the top of the board:

7. Once you have finished soldering all the parts on the board, inspect the board to make sure there
are no solder bridges or unsoldered pins. Lightly brush the back of the board with an old

14

toothbrush or paintbrush to clear off loose debris or tiny solder hairs. You can wipe the back of
the board with a cloth soaked in alcohol to remove small drops of rosin flux that have spattered
about.

Hold the finished board against a bright light. If you can see light coming through a pin hole, go
back and solder it again, to make sure you have a good electrical connection. This does not
apply to the vias, the plated holes where a trace goes from one side of the board to the other.
These can be left open.

See the section “Assembling the 8-bit Processor” for instructions on inserting the ICs.

Building the Control Board

Print out the Control Board Parts Organizer (in the Appendix) and put the parts on the organizer to
make sure you have them all, and to get familiar with them:

15

Once you have checked the parts you can start to solder them onto the circuit board.

The easiest way to solder the components is to start with the shortest (parts that lie closest to the board)
and proceed to the tallest. The order is resistors, pushbutton switches, oscillator, sockets, LED, ceramic
bypass capacitors, DIP switches, electrolytic capacitors. The 40-pin header receptacle is soldered on the
back of the board. Some components need to be oriented properly, as described below.

16

1. The resistors can be soldered first. They do not have to be oriented.

2. The pushbuttons are next. Make sure the leads are pushed all the way in. They kind of snap in
their holes.

3. The oscillator is oriented with the sharp corner at the front left:

4. The IC sockets are next. They do not need to be oriented.

5. The LED is next. The cathode, which is side with the shorter lead, and the flat side of the plastic
base, is oriented toward the right. There is a small “K” on the circuit board symbol by the
cathode hole:

6. The bypass capacitors are next. They do not need to be oriented.

7. The DIP switches are placed so that ON is up.

8. The electrolytic capacitors are placed with the negative stripe toward the right:

17

9. The 40-pin control connector header receptacle is soldered to the back of the board. Apply
solder to the pads and pins on the top of the board

10. Once you have finished soldering all the parts on the board, inspect the board to make sure there
are no solder bridges or unsoldered pins. Lightly brush the back of the board with an old
toothbrush or paintbrush to clear off loose debris or tiny solder hairs. You can wipe the back of
the board with a cloth soaked in alcohol to remove small drops of rosin flux that have spattered
about.

Hold the finished board against a bright light. If you can see light coming through a pin hole, go
back and solder it again, to make sure you have a good electrical connection. This does not
apply to the vias, the plated holes where a trace goes from one side of the board to the other.
These can be left open.

See the section “Assembling the 8-bit Processor” for instructions on inserting the ICs.

Assembling the 8-bit Processor
Carefully insert the ICs in their sockets on each board. Double check the IC labels to be sure you are
putting the correct ones in the correct locations. They are oriented with the small cut-out toward the
left:

18

You may have to bend the pins a little to make them go straight down, to better align with the pin holes
in the sockets. Make sure you do not fold any pins under when inserting the ICs. This is easy to do if
you are not careful, and can create a frustrating hardware bug that can be difficult to find. A folded-
under pin can look exactly like a normally inserted pin from the top.

Insert the three labeled GAL16V8 ICs in the control board A, B, C left to right:

After inserting the ICs the three-board stack can be assembled. Place the quarter-inch long M/F stand-
offs into the mounting holes under the ALU board with the threads up:

Then place the half-inch standoffs on those. Place the main board on the stack next. Be careful to line
up the pins on the ALU header with the receptacle on the bottom of the main board:

19

If lined up properly the main board the mounting holes on the main board will fit exactly over the
threads of the stand-offs.

Plug the cable or adapter for your system board onto the main board system connector (the 40-pin
header on the right).

Do not connect your system board yet.

Place half-inch stand-offs onto the threads of the standoffs beneath the main board. Then place the
control board on the stack, with its 40-pin receptacle lined up with the control connector on the main
board. Finish the stack by putting the quarter-inch nuts (female 0.25 inch standoffs) on the threads of
the top standoffs:

20

The header receptacles may not sit all the way down on the headers. This is OK, there will still be a
good electrical connection even with 1/8th inch of the header pins showing.

Once the stack is complete, connect power to the input jack on the main board. The processor uses +5V
DC, regulated, with a minimum of 2 amps (a 10 watt supply). This is also enough to run the processor
with a system board attached. Check to see if the power LEDs on each board are lit. If not, you may not
have good connections between the boards. Recheck to be sure the headers and plugs are lined up
correctly. If the power LEDs all light up, remove power, and connect the processor to your system
board. You can connect power to either the jack on the front of the processor main board, or the jack on
your system board, whichever is more convenient.

Control Board Switches
For convenience, the processor control board has several oscillators, a reset circuit, and switches to
allow easy operation of the computer system when the boards are stacked with a system board on the
bottom.

The control board has three clock oscillators that can be selected. The fast clock is a quartz crystal
oscillator that runs at 1.8432 MHz. The slow clock is an R-C oscillator that runs at a few cycles per
second. The single-step clock will produce an upgoing clock edge when the right-hand single-step
pushbutton is pressed, and a downgoing edge when the left button is pressed. Select the desired
oscillator by turning on its corresponding switch. Only one of the three clock selection switches should
be on at any time. If you have more than one on, no harm will be done, but the clock signal will not be
reliable.

The reset switch on the control board connects the reset circuit on the control board to the system reset
line. This circuit has an R-C delay that holds the system in reset for about a second after power-up to
allow the system to start properly. After about one second the reset is automatically released and the
system begins to run. The reset button, when held down, will hold the system in reset. When the reset
button is released, after about a second, the system will begin to run again.

If your system board has an oscillator or oscillators on it, and you want to use it or them, leave the
control board clock selection switches off, and select a clock on your system board. If you want to use
the oscillators on the control board, leave the oscillator switches or clock jumper on your system board
off.

Similarly, if you want to use the reset switch or button on your system board, leave the reset switch on
the control board off. If you want to use the control board reset circuit, turn the reset switch on your
system board off, or remove the reset jumper, and turn the reset switch on the control board on.

Using the 8-bit Processor with a 4K System
If using an Original Z80 kit with 2K ROM and 2K RAM (4K total memory space) as the system board
for the processor, remove the Z80 and the v.7 ROM from their sockets. Switch off both clock switches
and the reset switch on the Z80 computer kit board to use the clock oscillators and reset circuit on the
processor control board, or turn off the clock switches and reset switch on the control board to use the
oscillators and reset switch on the Z80 computer kit board. Place the 8-bit processor ROM for 4K
systems in the ROM socket.

The processor is connected to the Z80 computer kit board with a special adapter circuit board and

21

cables. A short 40-conductor cable connects the adapter circuit board to the system connector on the
processor main board, and a special cable connects the adapter circuit board to the Z80 socket. The 40-
pin DIP plug on the end of the special cable plugs into the Z80 socket. Here is a photo of a 4K system
with the bus display attached:

The edge of the ribbon cable for Z80 pins 1 and 40 should be on the left of the Z80 socket, as shown
above.

The 4K system can also be used with the serial interface board:

The ROM for 4K systems has code for a few simple test programs that make use of the input DIP

22

switches and output LEDs, and for testing and operating the serial interface2. There is also a program
loader. The program loader will take hexadecimal character input from the keyboard, convert the
characters to binary data (bytes), store the bytes in RAM starting at location 0x0810, and jump to the
start of the program when you hit the Enter key. A listing of the contents of this ROM, and a short
adder program to test the program loader, can be found in the Program Listings section of this manual.
Here are the programs in the ROM and the addresses:

0x0012 Port reflector

0x001D Simple counter

0x0025 Two-byte counter

0x0043 One-byte highest factor routine

0x0069 Serial interface test (echos characters)

0x008E Program loader

To use these programs, determine from the ROM listing, or from the above list, the address of the
program you want to run, and place the address on the DIP switches of the computer board. Then
power up the system. When the system comes out of reset it will then jump to the address on the input
switches and run from there. To reset the computer while it is powered up, you can press the reset
button on the control board, or turn on the reset switch on the system board if using this.

The 4K system can also use the 8-bit processor System Monitor, which is described in the next section.
However, you will only have access to RAM addresses 0x0900 to 0x0FFF. The System Monitor
reserves RAM addresses 0x0800 to 0x08FF for its variables and buffers.

Using the 8-bit Processor with a 64K System
There are two types of 64K systems you can use with the 8-bit processor. These are the Original Z80
kit with the disk and memory expansion, and the Single-board Z80 kit.

To use the Original Z80 kit with the disk and memory expansion as a 64K system for the processor,
connect the processor to the computer board with the disk and memory expansion and serial interface
attached, through the adapter and Z80 socket as shown for the 4K system above. The ROM and ports
on the computer board need to be disabled by removing the jumpers (you do not need to remove the v.7
ROM, but you can if you want). Remove the v.8 ROM from the socket on the disk and memory
expansion board, and replace it with the 8-bit processor System Monitor ROM. Switch off both clock
switches and the reset switch on the computer board to use the clock and reset circuits on the processor
control board, or switch off the clock and reset switches on the processor control board to use the
corresponding circuits on the system board, as described for the 4K system above. Here is a photo the
Original Z80 computer kit configured as a 64K system for the 8-bit processor:

2 For details on configuring and using the serial interface with a terminal emulation program see the Serial Interface Kit
instruction manual.

23

If using a Single-board Z80 kit computer as your system board, remove the clock and reset jumpers on
the computer board (the clock and reset will be provided by the processor control board). Remove the
Z80 processor and v.8 ROM from their sockets. Place the 8-bit processor System Monitor ROM in the
ROM socket. Place the ¼ inch male/female standoffs beneath the board, with the threads coming
through the mounting holes, and place the ¾ inch standoffs on top of the board:

The longer standoffs are provided with the Single-board Z80 kit in case you want to attach a disk
module to the IDE socket on the computer board.

The Single-board computer can be then be placed on the bottom of the processor stack and connected
to the main board of the processor by a 40-conductor ribbon cable:

24

Carefully place the control board on the top of the stack, lining up the receptacle on the bottom of the
control board with the main board control header, to complete assembly of the 64K 8-bit processor
computer system.

The system monitor program in the ROM is intended for use with the computer connected through the
serial interface to a dumb terminal, or to a PC running a terminal emulation program3. This allows text
output to a display, and text input using a keyboard. Connect the assembled 64K system to the PC’s
serial port using a straight-through serial cable, or to a USB port using an RS-232-to-USB adapter. Start
a terminal emulation program, configure the port for 8-N-1, 9600 baud communication. Connect +5V
DC regulated, 2 amp minimum power to the computer through either the jack on the front of the main
board, or the jack on the back of the system board.

The following examples use the RealTerm terminal emulation program running under Windows.

At power-up the system will display the system monitor greeting message and a list of commands:

3 For details on configuring and using the serial interface of the single-board computer see the Single-board Z80
Computer Kit instruction manual.

25

The commands are entered by pressing the number keys. After entering the number of the monitor
command, further input is taken from the keyboard. Here is a list of the commands.

Monitor commands

1=restart

This simply restarts the monitor program. You should get the command list again, without the greeting
message. This just verifies that the computer is alive and well.

2=dump

Displays a 256-byte block of the computer's memory. The command takes a 4-character hexadecimal
address as input, with characters A through F as upper case. The output display shows the 4-character
hexadecimal address of the first byte of each row, then 16 bytes of data as hexadecimal characters.
Here is a dump display of the first 256 bytes of the ROM:

26

This command is useful for debugging programs in RAM, as you can see the machine code, and the
values of your variables.

3=run

This causes the processor to jump to the address you enter and run code from there. See the example
for bload below.

4=load

This command takes input from the keyboard, as hexadecimal characters, and loads the input into
memory as binary byte values. Hit the Enter key to stop the input. During the load, the display shows
16-byte rows of input data in a manner similar to the dump command, without the addresses. Here is
an example, entering the first 16 hexadecimal numbers into RAM starting at location 0x0900:

27

Here is a dump display of RAM starting at location 0x0900. You can see the 16 bytes I entered:

28

The rest of the RAM has digital garbage in it.

You can use the load command to quickly change a byte of program code or a variable, to clear
memory by putting in zeros (just hold down the zero key, the repeats from the keyboard are entered),
and to load small programs by hand.

5=bload

This command is for loading binary files (binary load) over the serial interface into the computer
memory. The command takes a four-character hexadecimal address input, and a decimal file length
input. Then, it waits for the file to be sent from the PC to the kit computer. It works best if you enter the
exact length of the binary file. The bload command will hang if the file is shorter than the length you
enter.

The following is an example of loading a binary file using the bload command. We will load and
execute the program PI_9.OBJ which calculates a value for pi using a numerical integration. The
assembly language, list file, and binary object file for this program can be found on the CPUville
website.

29

The program has been assembled to load and run from the beginning of the user RAM at 0x09004. First
we need the exact file size, which we can obtain by hovering over the file name, or right-click-
Properties:

We need the exact size, which is 7734 bytes. Now we run the bload command, and enter the target
address as 0900. Hit the enter key, then enter the file length as decimal 7734. Hit enter after entering
the length. The monitor program displays “Ready, start transfer”.In the RealTerm Send tab, we navigate
to the PI_9.OBJ file using the … button. Click Open, and RealTerm is set up to send the file from the
PC to the serial port:

4 The first page of RAM, from 0x0800 to 0x08FF is reserved for workspace for the system monitor.

30

Now we click the Send File button. The Dump File to Port area background turns red, and a blue
progress bar is shown. After RealTerm has finished sending the file the background turns white again,
and “Done” appears above the blue file progress bar. The monitor commands will reappear in the
RealTerm port window, letting you know the command was successfully executed:

31

Now we will run the program using the run command. We enter the starting address of the program,
hit Enter, and the program runs, printing out a list of values of pi calculated using polygons of
increasing numbers of sides:

32

Connecting a disk drive

The 64K systems described above have IDE disk drive connectors. A variety of drives have been tested
with these systems using a Z80 as the processor (see the Table of Tested Disk Drives in the instruction
manual for the Disk and Memory Expansion kit or the Single-board Z80 kits). However, as of writing
this manual I have not written code to test a disk drive with the 8-bit processor. There is no reason a
disk drive should not work, but the code is not yet available. If you have written code to use a disk
drive, please let me know, and I will post it on the CPUville website. For details on connecting a disk
drive, see the manuals for the Disk and Memory Expansion kit or the Single-board Z80 kit. A 40-pin
right-angle adapter can be used to attach a disk module to the system board when it is in a stack with
the processor boards.

Introduction to Programming for the 8-bit Processor
The CPUville 8-bit processor was designed to be a very simple, yet complete, general-purpose
processor. It is simple, in that it has a small instruction set and simple design architecture, but complete,

33

in that it has all the instructions needed to perform the tasks of any computer. The trade-off is that with
a simple design and instruction set, programming is made more difficult than it would be for a
processor with a complex design and instruction set. For example, a more complex processor will have
registers and instructions that allow address indexing, but the CPUville 8-bit processor lacks these.
Therefore, to perform address indexing, one has to place the instruction with the address to be indexed
in RAM, and index the address portion of that instruction (see the “Special Programming Techniques”
section in the Appendix). But I believe the trade-off makes for a less expensive and more easily
understandable processor. Since the goal of this processor kit is understanding, and not processing
power or programming convenience, I think the trade-off is worth it.

The Instruction Set
Listed in this section are the instructions implemented by the CPUville 8-bit processor, in alphabetical
order of the assembly language mnemonics. These mnemonics are those I have chosen to use with the
TASM assembler, but these can be changed to suit the user by changing the TASM assembly language
table. See the “Using TASM” section of this manual. The instruction set is also summarized in tables
found in the Appendix.

The instruction format is variable, that is, an instruction can be one, two or three bytes long. The first
byte is always the opcode. The processor has 30 instructions, and the lower 5 bits of the opcode byte
are used. The upper three bits are ignored. Optional one- and two-byte operands follow the opcode.
One byte (8-bit) operands are either data or port addresses, and two-byte (16-bit) operands are memory
locations. The CPUville 8-bit processor uses the little-endian model for storing two-byte (16-bit)
instruction address operands. That is, the low-order byte of the address operand is stored in the lower
memory location, and the high-order byte is stored in the higher memory location. For example, the
instruction JMP 0CF34H, with the address operand CF34, is stored in memory as hex bytes 13, 34, CF
(13 is the hex opcode for JMP).

The programming model is a simple one: all arithmetic-logic instructions that use two operands take
one operand from the accumulator, and the other from either memory or from the instruction itself
(immediate addressing). The result is always placed in the accumulator. The mnemonics for the
arithmetic-logic instructions that take the second operand from memory are plain, thus ADD, OR etc.,
and the mnemonics for the instructions that take the second operand from the instruction itself append
IM (for immediate), thus ADDIM, ORIM etc. There are also special arithmetic instructions that
increment the accumulator by one (INC) or decrement the accumulator by one (DEC), and a CMP
(compare) instruction that performs a subtract-immediate operation that only affects the carry flag, and
does not change the value in the accumulator.

The processor has three flags, zero, minus and carry. The processor flags minus and zero are not
registered, that is, they reflect what is currently in the accumulator. This can be useful when scanning
input or output for a zero or negative byte, since no arithmetic operation is needed. The carry flag is
registered, and contains the carry-out bit from the most recent arithmetic operation, or as set by the
most recent CCF (clear carry flag) or SCF (set carry flag) instructions. One quirk of this processor is
that for subtract operations, a borrow request sets the carry flag to 0. That is, in A – B, if B > A the
carry flag will be 0, otherwise it will be 1.

All transfers of data between the processor and memory or ports go through the accumulator. That is,
the accumulator always serves as either a source or destination of a transfer. The data transfer
instructions are STM (store accumulator to memory), LDM (load accumulator from memory), LDI

34

(load accumulator immediate), IN (load accumulator with a byte from an input port), and OUT (send a
byte from the accumulator to the output port).

There is a simple set of flow-of-control instructions. These are the unconditional jump JMP, and the
conditional jumps JPM5 (jump if minus), JPC (jump if carry), and JPZ (jump if zero).

There is a no-operation instruction (NOP) for placeholding and other purposes.

The processor treats operands of arithmetic operations as unsigned integers, that is, there are no
hardware facilities for sign extension. There is no overflow flag. When working with signed integers,
the programmer must allow for this, and watch for overflow and do sign extension in software.

ADC – add with carry

This instruction adds the value of the accumulator and the carry flag to the value in the memory
location referenced by the operand to the instruction. It places the result in the accumulator, and
replaces the carry flag with the carry-out from this operation. The address operand of the instruction is
stored in little-endian fashion, with the least significant byte in the lower memory address location, and

5 The most frequent programming error I have made is confusing the JMP and JPM instructions. If you want, you can
change the mnemonics by changing the assembly language table.

35

the most significant byte in the higher memory address location.

36

ADCIM – add with carry, immediate

This instruction adds the instruction operand and the carry flag to the accumulator.

37

ADD – add memory data to the accumulator

This instruction adds the byte value contained in the memory location referenced by the two-byte
instruction operand to the accumulator. The address operand of the instruction is stored in little-endian
fashion, with the least significant byte in the lower memory address location, and the most significant
byte in the higher memory address location.

38

ADDIM – add immediate data to the accumulator

This instruction adds the byte value of the instruction operand to the accumulator.

39

AND – bitwise logical AND of memory data with the accumulator

This instruction performs a bitwise AND operation on the accumulator and byte from memory, placing
the result in the accumulator. For example, if dd = 1011 0101b and aa = 1100 0011b:

 1011 0101

AND 1100 0011

 1000 0001

The value 1000 0001 will be placed in the accumulator. The carry flag is not affected, but the minus
and zero flags are affected, as they are in all operations that affect the accumulator. The address
operand of the instruction is stored in little-endian fashion, with the least significant byte in the lower
memory address location, and the most significant byte in the higher memory address location.

40

ANDIM – bitwise logical AND of immediate data with the accumulator

This instruction performs a bitwise AND operation on the accumulator and a one byte instruction
operand, placing the result in the accumulator. For example, if dd = 0011 0101b and aa = 1010 0111b:

 0011 0101

AND 1010 0111

 0010 0101

The value 0010 0101b will be placed in the accumulator. The carry flag is not affected, but the minus
and zero flags are affected, as they are in all operations that affect the accumulator.

41

CCF – clear carry flag

This instruction places the bit value 0 in the carry flag flip-flop. The accumulator and other flags are
not affected. It is the complement of the SCF (set carry flag) instruction.

42

CMP – compare

This instruction subtracts the immediate data in the operand of the instruction from the accumulator,
and changes the carry flag to reflect the result of the operation. If dd > aa, the carry flag will be 0,
otherwise it will be set to 1, as in all subtraction operations. The accumulator and the other flags are not
affected.

43

DEC – decrement accumulator

This instruction subtracts 1 from the accumulator, and the result is placed back in the accumulator. If aa
< 1, (that is, if aa = 0) the carry out will be 0 (borrow request), otherwise it will be 1, as in all
subtraction operations. The minus and zero flags will be affected, as they are in all instructions that
affect the accumulator.

44

IN – load accumulator with data from an input port

This instruction places a byte value from an input port into the accumulator. The port address is the
one-byte operand of the instruction. The minus and zero flags are affected, as they are with any
instruction that affects the accumulator.

45

INC – increment accumulator

Adds one (increments) the accumulator. The flags are all affected.

46

JMP – jump unconditional

This instruction places the 16-bit memory address operand of the instruction into the program counter,
causing program flow to jump to the instruction at that address. The accumulator and flags are not
affected. The address operand of the instruction is stored in little-endian fashion, with the least
significant byte in the lower memory address location, and the most significant byte in the higher
memory address location.

47

JPC – jump if carry

This instruction places the 16-bit memory address operand of the instruction into the program counter,
causing program flow to jump to the instruction at that address, if the carry flag is 1, otherwise the
program counter continues with normal flow at the instruction address + 3. The accumulator and flags
are not affected. The address operand of the instruction is stored in little-endian fashion, with the least
significant byte in the lower memory address location, and the most significant byte in the higher
memory address location.

48

JPM – jump if minus

This instruction places the 16-bit memory address operand of the instruction into the program counter,
causing program flow to jump to the instruction at that address, if the minus flag is 1, otherwise the
program counter continues with normal flow at the instruction address + 3. The accumulator and flags
are not affected. The address operand of the instruction is stored in little-endian fashion, with the least
significant byte in the lower memory address location, and the most significant byte in the higher
memory address location.

49

JPZ – jump if zero

This instruction places the 16-bit memory address operand of the instruction into the program counter,
causing program flow to jump to the instruction at that address, if the zero flag is 1, otherwise the
program counter continues with normal flow at the instruction address + 3. The accumulator and flags
are not affected. The address operand of the instruction is stored in little-endian fashion, with the least
significant byte in the lower memory address location, and the most significant byte in the higher
memory address location.

50

LDI – load accumulator immediate

This instruction places the one-byte operand of the instruction into the accumulator. The carry flag is
not affected, but the minus and zero flags are affected, as they are in all instructions that affect the
accumulator.

51

LDM – load accumulator from memory

This instruction loads the accumulator with the one-byte value contained in the memory address
location referenced by the 16-bit address instruction operand. The carry flag is not affected, but the
zero and minus flags are affected, as they are in all operations that affect the accumulator. The address
operand of the instruction is stored in little-endian fashion, with the least significant byte in the lower
memory address location, and the most significant byte in the higher memory address location.

52

NOP – no operation

No operation performed. The program counter is incremented. The accumulator and flags are not
affected.

53

NOT – bitwise invert (ones-complement) accumulator

This instruction performs a ones-complement (inversion) of the accumulator. For example, if the
accumulator contains 0011 1010b, after the operation the accumulator will contain 1100 0101b. The
carry flag is not affected, but the zero and minus flags are affected, as they are in all instructions that
affect the accumulator.

54

OR – bitwise logical OR of memory data with accumulator

This instruction performs a bitwise logical OR operation on the accumulator and a byte from memory,
placing the result in the accumulator. For example, if dd = 1011 0101b and aa = 1100 0011b:

 1011 0101

OR 1100 0011

 1111 0111

The value 1111 0111b will be placed in the accumulator. The carry flag is not affected, but the minus
and zero flags are affected, as they are in all operations that affect the accumulator. The address
operand of the instruction is stored in little-endian fashion, with the least significant byte in the lower
memory address location, and the most significant byte in the higher memory address location.

55

ORIM – bitwise logical OR of immediate data with accumulator

This instruction performs a bitwise logical OR operation on the accumulator and a one byte instruction
operand, placing the result in the accumulator. For example, if dd = 0011 0101b and aa = 1010 0111b:

 0011 0101

OR 1010 0111

 1011 0111

The value 1011 0111b will be placed in the accumulator. The carry flag is not affected, but the minus
and zero flags are affected, as they are in all operations that affect the accumulator.

56

OUT – load output port with accumulator

Places the contents of the accumulator into the output port referenced by the 8-bit address in the
instruction. The accumulator and flags are not affected.

57

SBB – subtract memory and borrow from accumulator

This instruction subtracts the value of the byte in the memory location referenced by the 16-bit
instruction operand and the borrow from the accumulator, and places the result in the accumulator. If
the carry flag is zero, the borrow is 1, otherwise the borrow is zero. For example, if aa is 1100 0111b
and dd is 1010 1000b, and c = 1, the following operation is performed:

dd: 1010 1000

dd + borrow: 1010 1000

one’s complement of dd + borrow: 0101 0111

two’s complement of dd + borrow: 0101 1000

aa + two’s complement of dd + borrow:

58

 1100 0111

+ 0101 1000

 0001 1111, carry-out = 1 (no borrow)

The value 0001 1111b will be placed in the accumulator, and the carry flag will be set to 1. The zero
and minus flags will be affected as they are in all instructions that affect the accumulator. The address
operand of the instruction is stored in little-endian fashion, with the least significant byte in the lower
memory address location, and the most significant byte in the higher memory address location.

59

SBBIM – subtract immediate data and borrow from accumulator

This instruction subtracts the value of the byte in the operand of the instruction and the borrow from the
accumulator, and places the result in the accumulator. If the carry flag is zero, the borrow is 1,
otherwise the borrow is zero. For example, if aa is 0101 0111b and dd is 1010 1000b, and c = 0, the
following operation is performed:

dd: 1010 1000

dd + borrow: 1010 1001

one’s complement of dd + borrow: 0101 0110

two’s complement of dd + borrow: 0101 0111

aa + two’s complement of dd + borrow:

60

 0101 0111

+ 0101 0111

 1010 1110, carry-out = 0 (borrow)

The value 1010 1110b will be placed in the accumulator, and the carry flag will be set to 0. The minus
and zero flags will be affected as they are with all instructions that affect the accumulator. The address
operand of the instruction is stored in little-endian fashion, with the least significant byte in the lower
memory address location, and the most significant byte in the higher memory address location.

61

SCF – set carry flag

This instruction sets the carry flag to 1. The accumulator and the other flags are not affected. It is the
complement of the clear carry flag (CCF) instruction.

62

STM – store accumulator to memory

This instruction stores the contents of the accumulator into the memory location referenced by the 16-
bit address operand in the instruction. The accumulator and flags are not affected.

63

SUB – subtract memory from accumulator

This instruction subtracts the byte value contained in the memory location referenced by the two-byte
instruction operand from the accumulator. For example, if aa is 0101 0111b and dd is 1010 1000b, the
following operation is performed:

dd: 1010 1000

one’s complement of dd: 0101 0111

two’s complement of dd: 0101 1000

aa + two’s complement of dd:

64

 0101 0111

+ 0101 1000

 1010 1111, carry-out = 0 (borrow)

The value 1010 1111b will be placed in the accumulator, and the carry flag will be set to 0. The minus
and zero flags will be affected as they are with all instructions that affect the accumulator. The address
operand of the instruction is stored in little-endian fashion, with the least significant byte in the lower
memory address location, and the most significant byte in the higher memory address location.

65

SUBIM – subtract immediate data from accumulator

This instruction subtracts the value of the byte in the operand of the instruction from the accumulator,
and places the result in the accumulator. For example, if aa is 0011 0111b and dd is 1011 1001b, the
following operation is performed:

dd: 1011 1001

one’s complement of dd: 0100 0110

two’s complement of dd: 0100 0111

aa + two’s complement of dd:

66

 0011 0111

+ 0100 0111

 0111 1110, carry-out = 0 (borrow)

The value 0111 1110b will be placed in the accumulator, and the carry flag will be set to 0. Note there
is overflow with this operation, since there is a borrow-out but the high-bit of the result is zero. The
programmer needs to check for overflow with subtraction operations and deal with it in software, since
there is no overflow flag in this processor. The minus and zero flags will be affected by this instruction
as they are with all instructions that affect the accumulator.

67

XOR – bitwise exclusive OR of memory with accumulator

This instruction performs a bitwise exclusive-OR operation on the accumulator and byte from the
memory, referenced by the 16-bit operand in the instruction. The result is placed into the accumulator.
For example, if dd = 1011 0101b and aa = 1100 0011b:

 1011 0101

XOR 1100 0011

 0111 0110

The value 0111 0110b will be placed in the accumulator. The carry flag is not affected, but the minus
and zero flags are affected, as they are in all operations that affect the accumulator. The address
operand of the instruction is stored in little-endian fashion, with the least significant byte in the lower
memory address location, and the most significant byte in the higher memory address location.

68

XORIM – bitwise exclusive-OR of immediate data with accumulator

This instruction performs a logical bitwise exclusive-OR operation on the accumulator and a one byte
operand from the instruction, placing the result in the accumulator. For example, if dd = 0011 0101b
and aa = 1010 0111b:

 0011 0101

OR 1010 0111

 1001 0010

The value 1001 0010b will be placed in the accumulator. The carry flag is not affected, but the minus
and zero flags are affected, as they are in all operations that affect the accumulator.

69

Using TASM
The TASM assembler program is a flexible macro assembler that runs under 16-bit MS-DOS. It is
shareware. The executable file can be obtained from a variety of sites. Here is one:

https://github.com/feilipu/NASCOM_BASIC_4.7/tree/master/TASM31

The TASM manual is on the above site, as well as on this web page:

http://www.cpcalive.com/docs/TASMMAN.HTM

Please note that this is not the Borland Turbo-assembler, also called TASM, but the Telemark
Assembler, v. 3.1.

TASM is able to assemble code for the CPUville 8-bit processor. It requires a table file that matches the
8-bit processor assembly language to the opcodes. The table file, TASM08.TAB, is available on the
CPUville website.

To run TASM, it is simplest to use an MS-DOS emulator. The one I use is DOSBox, available as a free
download here:

https://www.dosbox.com/

DOSBox is available for both Windows and Linux.

Before you begin, create a folder for TASM assembly projects. Put the TASM.EXE and TASM08.TAB
files in the folder. Create your assembly language program as a text file, using whatever text editor you
like for your operating system. The example I am using here demonstrates assembly of the PI_9
program. I saved the assembly language file as pi_9.asm in the folder ~/TASM/TTL on my Linux
system.

Start DOSBox. The DOSBox window opens. Now, mount your working TASM folder into the
DOSBox emulator as the C drive:

70

https://github.com/feilipu/NASCOM_BASIC_4.7/tree/master/TASM31
https://www.dosbox.com/
http://www.cpcalive.com/docs/TASMMAN.HTM

Change to the C: drive:

71

Invoke TASM and assemble the program file using the command tasm -08 -b pi_9.asm. The
command line option -08 indicates which table file to use, the “08” coming from the table file name.
The -b option causes the assembler to create a binary object code file (its default is Intel Hex).

If there are syntax errors, the assembler will list them. Keep file names short, and without spaces in the
original MS-DOS style to prevent headaches.

If the assembly completes without errors, the assembler will create two files, PI_9.LST and PI_9.OBJ.
The object file will be in binary format because of the -b option in the TASM command.

When you are finished, type exit on the DOSBox command line.

For examples of assembly language files that will assemble with TASM, see the “Selected Program
Listings” section of this manual, and the program listings on the CPUville website. Note that TASM
can take assembly language mnemonics in upper or lower case, but labels are case-sensitive. Labels are
separated from the assembly language statements by white space, with an optional colon character after
the label. Assembler directives (pseudo-operations) are preceded by the period character. Other
characteristics of TASM are discussed in the TASM manual.

TASM is a macro-assembler, and the use of macros is a great aid in programming for the 8-bit
processor. Using assembler macros and the processor’s simple instruction set the programmer can
create code that overcomes many of the processor’s limitations. See the section “Special Programming
Techniques” in the Appendix for examples.

72

Schematics and Explanations
This section is an attempt to explain how the processor is made. It has block and schematic diagrams of
the parts of the processor, and explains the functional sections. The whole schematic of each board is
too large to be shown accurately in this document, so only selected portions are shown and discussed.
The map images in this section are only to show where on the larger schematic the circuit sections are
taken from; the underlying schematic in these map images is of low resolution. The high-resolution
schematic images can be downloaded from the CPUville website.

I show here the inter-board connectors and the active circuit elements of each schematic. The
connections between the circuit elements are not shown, but of course they are of vital importance.
Sometimes the connections can be inferred from the pin labels on the integrated circuit symbols. If you
want to study how the circuit elements connect to each other in detail I recommend downloading the
high-resolution schematics from the CPUville website.

73

Overall design of the processor data path

This diagram shows the elements of the processor, and the computer system, that deal with the flow of
data.

The data path board is the main board of the processor. It has on it the registers that hold important
data, and multiplexers (data selectors) that guide the flow of data though the processor.

The ALU board is shown here as plain ALU symbol, with the inputs and outputs indicated. The ALU is
a piece of combinational logic, that is, it does not store any data or have any state. When the inputs
change, the outputs change after a brief delay. A given input always produces the same output. For
detail on how the ALU works, see the ALU schematics section below.

The system board has the computer memory (ROM and RAM) and the input output ports. This may be
the Original Z80 computer or Single-board Z80 computer configured to run with the 8-bit processor, or
your own system board.

Not shown in the diagram above is the control logic board. The control board takes as input the current

74

instruction and the flags, and produces outputs that determine the settings of the multiplexers on the
main board and which registers will be written, in order to perform the instruction. The control logic
also produces the read and write signals for the system memory and ports. Unlike the ALU, the control
logic “has state”. That is, for a given set of inputs, the outputs are determined by the current state,
stored in a register on the control board. The next state to be performed is determined by the next-state
logic on the control board, which takes as input the current state, the instruction, and the flags. There is
a detailed explanation of how the next-state logic works in the Appendix. The next-state becomes the
current state on each upgoing clock edge. The control logic will run through a series of states unique to
each instruction, which causes the data path and system to perform the instruction. The control board of
this processor also has clock oscillators and a reset circuit for convenience; these circuits are not
usually thought of as elements of processor control, but rather of the overall system.

Main board (data path) schematics

Below is a map image that shows where the following schematics are taken from. The schematic in the
map image is low resolution; a high-resolution schematic can be obtained from the CPUville website.

75

Display connector

The display connector has outputs of the main board registers and flags for passing to a register display
board, which is an accessory.

76

Program counter

The program counter is a 16-bit, presettable, clearable binary counter. It contains the address of the
instruction to be fetched. It is made from four 4-bit synchronous counter ICs. Synchronous counters
will follow a counting sequence based on internal logic, rather than propagation from one bit to the
next, or one counter to the next, so there is no propagation delay. In fact, you can see that the clock
pulse is fed to each 4-bit counter. When the control logic determines that the address of the PC needs to
incremented, it creates a clock pulse. When the processor is reset, the master reset signal is asserted,
and the PC is forced to zero (cleared). This is why the processor starts execution at address location
0x0000 after coming out of reset. A jump instruction will use the preset control input /Pe to load an
address into the PC over the counter inputs P0 to P3.

77

Zero flag logic

The zero flag logic is an 8-input NOR operation. Each bit of the accumulator value is an input. When
all the bits are zero, the final output is one.

78

Address source multiplexer

This multiplexer determines which processor address to place on the system address bus. There are
only two address sources in the processor, the program counter (PC) and the instruction operand
register (OPR Hi and Lo, combined as a 16-bit address value). The one-bit select input (S) determines
which of the two addresses will appear on the multiplexer outputs. The control line for this select bit is
Addr Src (address source).

79

Instruction register

The instruction format of this processor is a 5-bit operation code (opcode, hexadecimal 00 to 1F), and
an optional one- or two-byte operand. This register holds both the opcode and the operand of the
current instruction, once they are fetched from memory. Note only the lower 5 bits of the opcode byte,
stored in U12 and U13, are used.

80

Data-out buffer

This processor uses a bi-directional data bus to connect to system memory and input/output ports. If a
read or input instruction is being performed, the processor is receiving data from the system, and this
buffer is “closed” (the outputs are in third-state, a high-impedance state like a cut wire). If a write or
output instruction is being performed, the processor is sending data out onto the address bus. Then the
buffer “opens”, controlled by the control logic, and its outputs become active.

Control connector

Here you see the various inputs to and outputs from the control logic board. The inputs are the current
operation code (opcode) and the flags (zero, minus and carry).The outputs are of several types. There
are the multiplexer address select lines, like Addr_Src (address source, for the address source
multiplexer). There are the register write clock pulses, like Acc_CP (accumulator clock pulse), and a
pulse to increment the program counter (PC_CP). There are control signals to load the PC, and to set
and clear the carry flag. The Carry_CP causes the carry flip-flop to store the current carry-out bit from
the ALU. Finally there are the system control signals, memory request (/Mem_Req), input-output
request (/I-O_Req), read (/RD) and write (/WR). The forward slash indicates an active-low signal, that
is, that the signal is asserted when it is zero.

81

ALU op source multiplexer, carry flip-flop, and ALU connector

The ALU connector shows the inputs to and outputs from the ALU. The data inputs to the ALU are two
8-bit operands, ALU_A and ALU_B, and the carry-in from the carry flip-flop. The ALU operand is a
three-bit input that signals the ALU which operation to perform. For simplicity, the ALU opcode is the
low-order three bits of the arithmetic-logic processor opcodes. The outputs from the ALU are the 8-bit
ALU data out (for example, the sum from an addition operation) and the carry-out.

The carry flip-flop stores the carry-out from the most recent arithmetic operation. It can also be set or
cleared by the set carry flag (SCF) and clear carry flag (CCF) instructions through the Sd (set data) and
Cd (clear data) inputs.

There are special instructions to increment and decrement the accumulator, and a compare instruction
that subtracts but only sets the carry flag. For those instructions, the ALU op source multiplexer is
configured to send an addition ALU opcode (000 binary) or a subtraction ALU opcode (010 binary)
through the multiplexer inputs 1 and 2, respectively. All other arithmetic operations pass the ALU
opcode from the lower 3 bits of the processor instruction opcode to the ALU through the 0 inputs of the
multiplexer.

82

Accumulator source multiplexer and accumulator

The accumulator is an 8-bit register that is the only data register in the processor available to the
programmer. The accumulator source multiplexer selects the data input for the accumulator from three
possible sources: The ALU output, the lower 8-bits of the instruction operand, or the data bus (from
memory or ports). The multiplexer address and accumulator register write pulse come from the control
logic.

83

ALU B source multiplexer

The ALU has two 8-bit data inputs, A and B. The A input always comes from the accumulator. The B
input varies depending on the instruction. The ALU B source multiplexer controls where the ALU B
input comes from. There are three possible sources: The data bus (from memory), the lower 8-bits of
the instruction operand (immediate operations), and a hard-wired 0000 0001b for the increment and
decrement operations (input 1 of the multiplexer).

84

System connector

This connector has the address and data bus connections, and the control outputs for reading and
writing the ports and memory that are on the system board. Also passed through this connector are the
system clock and the reset signal, allowing for using a clock and reset switch on the system board or
the processor control board, depending on switch and jumper settings. +5V and GND are also passed
through. You may note the similarity between the signals here and signals from a Z80 processor. This is
intentional, to allow Z80-based systems such as the CPUville Original Z80 and Single-board Z80
computers to serve as system boards for the CPUville 8-bit processor.

ALU schematics

The ALU is a piece of combinational logic that performs the arithmetic (addition and subtraction) and
logical operations of the processor. It does this by performing all the operations on the inputs at the
same time, and selecting only the one indicated by the instruction to appear on the outputs. This applies
to the carry-out also, which is computed by the adder even when requesting a logical operation. These
unwanted carry-outs are not stored in the carry flip-flop, so they have no affect on the system. Here is a
block diagram of the ALU:

85

The A and B data inputs, and the carry-in from the carry flip-flop on the main board, are shown on the
left. The 3-bit ALU opcode and the carry-in are inputs to a logic circuit that sets multiplexer addresses
for the carry-in, B inversion, borrow select, and output select multiplexers.

The A input is fed to all the arithmetic-logic elements of the ALU at the same time. The B input may be
inverted for subtraction by twos-complement addition. The carry-in may be from the carry flip-flop
(add with carry operations) or zero (for plain add operations). In subtraction, a carry-in of one is
selected to complete the two’s-complement addition. A second “borrow adder” is in series with the first
adder, to subtract one (again, by two’s-complement addition) from the result of a subtraction if there is
a borrow-in.

The outputs are the carry-out, and the output of the ALU output multiplexer. Also shown is a bit of
logic that determines if the carry-out should come from the first adder, or from the borrow adder in the
case of a subtract with borrow operation.

Below is a map image showing where the following schematics come from. The schematic underlying
this map image is low-resolution. To see a high-resolution image of the ALU schematic, download it
from the CPUville website.

86

ALU connector

This is the same connector as seen on the main board. The outputs there are inputs here to the ALU.
The ALU inputs are the 8-bit operands A and B, the carry-in, and the ALU opcode. The outputs are the
ALU data out, and the carry-out. Power (+5V and ground) is also passed to the ALU through this
connector.

87

Carry-out logic

This bit of logic determines if the carry-out from subtract-with-borrow operations will be the carry-out
from the main adder, or the carry-out from the borrow adder. There is a detailed explanation of the
logic for this in the Appendix.

ALU logic

This logic circuit takes as input the three-bit ALU opcode, and the carry-in. The outputs are the various
ALU multiplexer select lines. The 74LS138 is a 1-of-8 decoder. Only 7 outputs are used.

Note the boxed in NOR operation, made of three inverters and a NAND gate. I did it this way because
there were extra inverters and NAND gates available. To use a straight NOR gate I would have had to
add another IC to the board.

For a detailed explanation of this logic circuit, see the Appendix.

88

B inverter and multiplexer

The B inverter inverts the B input for use in subtraction operations. The multiplexer selects whether an
uninverted or inverted B value is used as an input to the adder.

Carry-in multiplexer

This multiplexer selects which carry-in to feed to the adder. There are three choices: the carry flag from
the carry flip-flop, one (for subtract operations to complete a twos-complement addition) and zero, for
plain additions, like the ADD operation. The select lines come from the control logic. Note there are
two multiplexers on this IC, only one is used (the A multiplexer), and only 3 of the 4 inputs of that one
are used.

89

Borrow multiplexer

For subtract-with-borrow operations, the borrow-in will be a twos-complement addition (subtraction)
of 1 from the result of the main subtraction. This multiplexer selects either a negative 1 or zero input
for the borrow adder, depending on whether there is a borrow-in or not.

Adder

This is the main adder, used for addition, addition with carry, and subtraction operations. For subtract-
with-borrow, there is another adder in series with this one, to subtract 1 by two’s complement addition
from the main result if there is a borrow-in.

90

Borrow adder

This is the borrow adder that is in series with the main adder. It is used to subtract 1 from the result of a
subtraction operation performed by the main adder, if there is a borrow-in.

I am not totally happy with the subtraction part of the ALU. I think perhaps designing a dedicated
subtracter, with basic logic gates, might have been a better approach. The implementation I used here
works, but it feels a little kludge-y.

91

AND

This is a simple 8-bit, two input AND operation, performed on the ALU A and B inputs. The output is
fed to the ALU output multiplexer inputs.

92

OR

This is a simple 8-bit, two input OR operation, performed on the ALU A and B inputs. The output is fed
to the ALU output multiplexer inputs.

93

XOR

This is a simple 8-bit, two input exclusive-OR (XOR) operation, performed on the ALU A and B
inputs. The output is fed to the ALU output multiplexer inputs.

94

NOT

This is a simple inversion operation, performed on the ALU A input. The output is sent to the ALU
output multiplexer inputs.

95

ALU output multiplexer

This is an 8-bit, eight-input multiplexer. Only 5 of the possible 8 inputs are used. This multiplexer

96

determines which ALU operation output is sent out to the main board through the ALU connector.
Although all operations are performed simultaneously by the ALU, only the selected operation output
is sent.

Control board schematic

The control board is the beating heart of the processor. The main board and the ALU are directed, or
controlled, by the outputs of the control board.

The central core of the control board is the finite state machine, made of the state register and the next-
state logic. This electronic machine is prodded by the upgoing system clock edges to run through a
series of states, which are bit patterns (numbers) generated by the next-state logic and stored in the state
register. The next-state logic takes as input the current state, current instruction opcode and the
processor flags, and produces the next state.

Each current state is also the only input to the control signals logic. The control logic outputs are the
multiplexer address lines, the register write pulses, and the system control signals, such as memory
request and read and write, that together make the computer run. Here is a block diagram of the control
board:

There are detailed explanations of the next-state and control signals logic in the Appendix.

For convenience the control board also has three clock signal generators and a reset circuit. These are
here so the processor can be used with a variety of simple system boards that might be on the bottom of
the stack, allowing the clock selection and reset to be performed on the control board, which will
usually be on the top of the stack.

97

Here is a map image showing where the individual schematics of the control board are taken from. The
schematic underlying this map image is low resolution. For a high-resolution schematic, download the
schematic image from the CPUville website.

98

State register

This register holds the current state value. The processor has a total of 22 states (from 0 to 21), so a
five-bit state register is adequate. The state register is written on every upgoing edge of the system
clock, taking as input the next-state value from the next-state logic (NS bits 0 to 4). The state register is
cleared to zero during a system reset through the Cd inputs. Together with the cleared program counter,
this assures that when coming out of reset, state 0 (opcode fetch) is executed on address 0x0000.

99

Next-state logic

The next-state logic is a piece of combinational logic that takes as input the current state, the instruction
opcode, and the system flags, and produces as output the next state. It is implemented on GAL16V8
programmable logic ICs. I used them because each GAL16V8 takes the place of about 10 discrete logic
ICs (AND and OR gates), and saves the processor from needed another circuit board. It does hide some
complexity though. There is a full explanation of this logic circuit in the Appendix.

If you are a TTL purist, and want to have this logic circuit implemented with discrete logic ICs, contact
me, and I will work up a schematic for you. You can connect your discrete-IC next-state logic board to
the control board through 20-conductor ribbon cables terminated with 20-pin DIP plugs that plug into
these three GAL sockets.

100

Front panel connector

This connector allows for clock selection and reset switches on a front panel display to control the
computer. The global labels (red square labels) on the schematic are connections to the points with
similar labels on the Clocks and Reset schematic. It also carries the state bits from the state register to
the front panel display.

State decoder

The state decoder is a 1-of-24 decoder, only 21 of the outputs are used. The outputs are active-low state
signals. These outputs become the input to the control signals logic. Note there the state=1 output is not
used. None of the control logic equations use this bit. See the “Control Signals Logic Explanation” in

101

the Appendix for details.

Control connector

This connector is identical in its schematic form to the control connector on the main board.

Control logic (portion)

This shows part of the logic network that generates the multiplexer select addresses, register write
pulses, and system control signals. The control signals logic is explained in detail in the Appendix.

102

Clocks and reset

Usually part of a system board, these circuits are on the control board to allow convenient operation of
the computer if the system board is on the bottom of the stack. It also allows a builder to make a simple
system board that does not have these circuits on it, since these can be used instead. The global labels
here show connections to the front panel connector, allowing switches on the front panel to control
these circuits.

Clock delay

The register write pulse machine, described below, uses an offset from the system clock to perform its
function. Running a signal through a series of gates adds about a 10 nanosecond per gate delay.

103

Write signal machine

A flip-flop (the 74LS74) holds the system write signal (/WR, active-low) constant over a change in
states, which is important for the timing needed to write data to RAM and to output ports. A latch (the
74LS75) holds steady the address source (Addr_Src) multiplexer select signal, and the other signals
needed to write data to the system. Details of write signal timing can be found in the Appendix.

Register write pulse machine

The control logic creates register write signals as levels, not clock edges. This machine converts these
levels into edges. The Clock_delta_4 input writes the signals into the 74LS174 register, creating the
clock pulses (edges) on the outputs needed to write the registers and increment the program counter
(PC). After these edges are generated a master reset is performed by a low level on the
Clock_from_oscillator, which is offset from Clock_delta_4 because of the built in delay shown above.
This reset is important, because the register write pulses need to return to low after an upgoing edge is
sent. Note the system clock is generated from another flip-flop so that its edges, which write the state
register, will be synchronous with the other register write pulse edges. Details of register write machine
timing can be found in the Appendix.

104

Appendix

ALU parts organizer

Capacitor, 0.01uF

6

74LS00 quad NAND

1

74LS04 hex inverter

4

74LS08 quad AND

3

74LS138 1-of-8 decoder

1

DIL 14-pin socket

13

74LS151 8-input
multiplexer

8

DIL 16-pin socket

18

74LS153 dual 4-input
multiplexer

1

74LS157 quad 2-input
multiplexer

4

74LS283 4-bit full adder

4

74LS32 quad OR

3

74LS86 quad XOR

2

40-pin header

1

Resistor, 470 ohm, ¼ watt
Yellow-Violet-Brown

1

LED

1

105

ALU parts list

 I buy almost all my parts from Jameco. If you buy from a different supplier, you can check the
datasheets for these parts on the Jameco website by referring to the part number.

106

Part PCB reference Number per unit Jameco Part No.
Cap 0.01 uF C1 – C6 6 15229
74LS00 U3 1 46252
74LS04 U2, U4, U5, U21 4 46316
74LS08 U15, U16, U31 3 46375
74LS138 U1 1 46607
74LS151 U22 – U29 8 46703
74LS153 U6 1 46720
74LS157 U7 – U10 4 46771
74LS283 U11 – U14 4 47423
74LS32 U17, U18, U30 3 47466
74LS86 U19, U20 2 48098
40-pin header P1 1 53532
14-pin socket 13 112214
16-pin socket 18 112222
470 ohm R1 1 690785
LED (red) D1 1 2081932

Main board parts organizer

Capacitor, 0.01uF

6

74LS04 hex inverter

1

74LS153 dual 4-input
multiplexers

10

74LS157 quad 2-input
multiplexer

4

74LS161 binary counter

4

74LS175 quad D flip-flop

8

74LS244 octal buffer

1

74LS32 quad OR

2

74LS74 dual D flip-flop

1

40-pin header

2

50-pin header

1

40-pin header receptacle

1

14-pin socket

4

16-pin socket

26

20-pin socket

1

Power-in jack

1

Resistor, 470 ohm
Yellow-Violet-Brown

1

LED

1

107

Main board parts list

108

Part PCB reference Number per unit Jameco Part No.
Cap 0.01 uF C1 – C6 6 15229
74LS04 U7 1 46316
74LS153 U19 – U24, U28 – U31 10 46720
74LS157 U8 – U11 4 46771
74LS161 U1 – U4 4 46818
74LS175 U12 – U17, U26, U27 8 46957
74LS244 U18 1 47183
74LS32 U5, U6 2 47466
74LS74 U25 1 48004
40-pin header P2, P4 2 53532
50-pin header P1 1 53560
40-pin header receptacle P3 1 111705
14-pin socket 4 112214
16-pin socket 26 112222
20-pin socket 1 112248
Power-in jack 1 137673
470 ohm R1 1 690785
LED (red) D1 1 2081932

Control board parts organizer

Capacitor, 0.01uF

6

Oscillator, 1.8432 MHz

1

4-position DIP switch

1

74LS00 quad NAND

1

74LS04 hex inverter

5

74LS08 quad AND

6

74LS138 1-of-8 decoder

3

74LS139 dual 1-of-4
decoder

1

74LS14 hex inverter
Schmitt trigger

1

74LS174 hex D flip-flop

1

74LS74 dual D flip-flop

4

74LS75 quad latch

1

GAL 16V8-D
programmable logic

3

16-pin header

1

40-pin header receptacle

1

Capacitor, 22 uF

2

14-pin socket

17

16-pin socket

6

20-pin socket

3

Pushbutton switch

3

Resistor, 470 ohm
Yellow-Violet-Brown

1

Resistor, 1K ohm
Brown-Black-Red

2

Resistor, 2.2K ohm
Red-red-red

1

Resistor, 100K ohm
Brown-black-yellow

1

LED (red)

1

109

Control board parts list

110

Part PCB Reference Number per unit Jameco Part no.
Cap 0.01 uF C3 – C8 6 15229
Osc 1.8432 MHz U24 1 27879
4-position DIP switch U25 1 38820
74LS00 U21 1 46252
74LS04 U10, U14, U22, U26, U31 5 46316
74LS08 U15 – U20 6 46375
74LS138 U11, U12, U13 3 46607
74LS139 U6 1 46623
74LS14 U23 1 46640
74LS174 U28 1 46931
74LS74 U3, U4, U5, U30 4 48004
74LS75 U29 1 48021
16-pin header P2 1 109568
40-pin header receptacle P1 1 111705
14-pin socket 17 112214
16-pin socket 6 112222
20-pin socket 3 112248
Push button switch SW1, SW2, SW3 3 122973
Resistor 470 ohm R11 1 690785
Resistor 1K R2, R3 2 690865
Resistor 2.2K R4 1 690945
Resistor 100K R1 1 691340
GAL16V8-D U7, U8, U9 3 876539
Cap, 22 uF C1, C2 2 1946295
LED (red) D7 1 2081932

ALU carry-out logic explanation

Problem: With the subtract-with-borrow instruction, in the case where the difference from the first half-
subtractor (the adder configured to do subtraction) is zero, the final carry-out (borrow-out) cannot be
the carry-out from the first half-subtractor. In this case, the first carry-out will be 1 (no borrow), and the
carry-out from the second half-subtractor (the “borrow adder”) will be zero (borrow). What is needed is
a logic circuit that in this case will output the correct borrow, the one from the borrow adder. Here is
the truth table:

Borrow Select Adder C.O. Borrow C.O. Final C.O.
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

The second-to-bottom row is where the final c.o. cannot follow the main adder c.o. If the borrow select
is 1, and if the borrow adder c.o. is zero, one can use that, otherwise use the adder c.o. In other words,
if the borrow select is 1, the final c.o. can be adder c.o. AND borrow c.o. Here is the logic equation:

FinalCO = (NOT(BorrowSelect) AND AdderCO) OR (AdderCO AND BorrowCO)

This logic equation is implemented on the ALU board by an inverter, two AND gates, and one OR gate.

ALU logic explanation

The ALU logic sets the various ALU multiplexer select inputs, depending on the ALU operation code
and the carry-in. The ALU opcode (numbers in the top row) serves as the input to a one-of-eight
decoder (only 7 outputs are used). The outputs of this decoder are active-low, that is, if the ALU opcode
is decimal 7, the corresponding decoder output 7 will be 0, the other decoder outputs will be 1. These
outputs are used in the logic operations listed in the table below, which determine the multiplexer select
control outputs.

111

The borrow select control is determined by a NOR operation between decoder output 3 and the carry-
in, as shown in the ALU logic schematic.

Next-state logic explanation

Each state causes the processor to perform some part of an instruction. The part it performs must finish
within one clock cycle (about 500 nanoseconds if running at 2 MHz). Each instruction is made up of a
sequence of states. Here are the states and what they do:

For example, to perform the ADD instruction (add memory to accumulator) the processor must perform
this state sequence:

State 0: Fetch the instruction opcode. This state also increments the program counter.

State 1: Interpret the instruction – allows the next-state logic to calculate the next state.

State 2: Fetch the low-order byte of the memory address (operand-low). Increment the PC.

State 3: Fetch the high-order byte of the memory address (operand-high). Increment the PC.

State 4: Perform the addition. The address in the instruction operand causes the memory to output the
byte to be added. This byte is sent to the ALU along with the contents of the accumulator. The ALU
performs the addition. The sum is written into the accumulator and the the carry-out is stored in the
carry flip-flop at the end of the clock cycle.

All instructions begin with state 0 and 1. The state(s) after 1 perform the instruction. The one exception
is the NOP instruction (no operation) which only performs states 0 and 1.

After the last state of each instruction is performed the next-state logic produces the 0 state, which is
the default output of the next-state logic. That is, if no 1 bits are specified by the next-state logic, all the
next-state output bits will be zero. This means the next-state will be 0, and an instruction fetch will be

112

State Function Controls used Registers written
0 Instruction fetch, increment PC Addr src, Data out, Mem Req, Rd, PC inc OPC, PC (incremented)
1 Instruction interpretation
2 Operand Lo fetch, increment PC Addr src, Data out, Mem Req, Rd, PC inc OPR Lo, PC (incremented)
3 Operand Hi fetch, increment PC Addr src, Data out, Mem Req, Rd, PC inc OPR Hi, PC (incremented)
4 Arithmetic memory Addr src, Data out, ALU B src, ALU Op src, Acc src Accumulator, Carry FF
5 Logical memory Addr src, Data out, ALU B src, ALU Op src, Acc src Accumulator
6 NOT ALU Op src, Acc src Accumulator
7 Load 8-bit data from instruction to Acc Acc src Accumulator
8 Load 8-bit data from memory to Acc Addr src, Data out, Acc src, Mem Req, Rd Accumulator
9 Store 8-bit data from Acc to memory A Addr src, Data out, Mem Req, Wr Set Addr Src FF (control logic)
10 Store 8-bit data from Acc to memory B Addr src, Data out, Mem Req, Wr Reset Addr Src FF (control logic)
11 Jump PC (load preset)
12 Input 8-bit data from port to Acc Addr src, Data out, Acc src, I/O Req, Rd Accumulator
13 Output 8-bit data from Acc to port A Addr src, Data out, I/O Req, Wr
14 Output 8-bit data from Acc to port B Addr src, Data out, I/O Req, Wr
15 Arithmetic immediate ALU B src, ALU Op src, Acc src Accumulator, Carry FF
16 Logical immediate ALU B src, ALU Op src, Acc src Accumulator
17 Compare immediate ALU B src, ALU Op src Carry FF
18 Increment Acc ALU B src, ALU Op src Accumulator, Carry FF
19 Decrement Acc ALU B src, ALU Op src Accumulator, Carry FF
20 Set carry flag Set carry flag Carry FF
21 Clear carry flag Clear carry flag Carry FF

done.

Here is a table of the instructions with their state sequences:

The task of the next-state logic is to create the state sequences for each instruction. For example, if the
current state is state 0, and the instruction opcode is 00h, the next-state needs to be 1. If the current
state is 1, and the instruction opcode is 00h, the next-state needs to be 2.

So we need a logic circuit that takes as input the current state (5-bits), the instruction opcode (5 bits),
and the zero, minus and carry flags (3-bits, for the conditional jumps), and generates the 5-bit next-state
output.

To do this, we break the problem into 5 different logic circuits, one for each next-state bit. For example,
the next-state 0 bit will be 1 for next-state outputs 1, 3, 5, 7, 9, 11, 13, 19 and 21 (odd-numbered next-
states). So, next-state bit 0 will be 1 if the current state is zero (for all instructions), or if the current

113

Opcode Mnemonic Function State sequence
00 ADD Add memory to accumulator 0, 1, 2, 3, 4
01 ADC Add memory and carry to accumulator 0, 1, 2, 3, 4
02 SUB Subtract memory from accumulator 0, 1, 2, 3, 4
03 SBB Subtract memory and borrow from accumulator 0, 1, 2, 3, 4
04 AND Binary AND memory with accumulator 0, 1, 2, 3, 5
05 OR Binary OR memory with accumulator 0, 1, 2, 3, 5
06 XOR Binary XOR memory with accumulator 0, 1, 2, 3, 5
07 NOT Complement accumulator 0, 1, 6
08 ADDIM Add 8-bit value in instruction to accumulator 0, 1, 2, 15
09 ADCIM Add 8-bit value in instruction and carry to accumulator 0, 1, 2, 15
0A SUBIM Subtract 8-bit value in instruction from accumulator 0, 1, 2, 15
0B SBBIM Subtract 8-bit value in instruction and borrow from accumulator 0, 1, 2, 15
0C ANDIM Binary AND 8-bit value in instruction with accumulator 0, 1, 2, 16
0D ORIM Binary OR 8-bit value in instruction with accumulator 0, 1, 2, 16
0E XORIM Binary XOR 8-bit value in instruction with accumulator 0, 1, 2, 16
0F CMP Subtract 8-bit value in instruction from accumulator, set carry only 0, 1, 2, 17
10 LDI Load 8-bit value in instruction into accumulator 0, 1, 2, 7
11 LDM Load accumulator from memory 0, 1, 2, 3, 8
12 STM Store accumulator into memory 0, 1, 2, 3, 9,10
13 JMP Jump to memory location 0, 1, 2, 3, 11
14 JPZ Jump to memory location if zero 0, 1, 2, 3, [11 if met]
15 JPM Jump to memory location if minus 0, 1, 2, 3, [11 if met]
16 JPC Jump to memory location if carry 0, 1, 2, 3, [11 if met]
17 IN Load accumulator with 8-bit value from port 0, 1, 2, 12
18 OUT Send 8-bit value from accumulator to port 0, 1, 2, 13, 14
19 INC Add 1 to accumulator 0, 1, 18
1A DEC Subtract 1 from accumulator 0, 1, 19
1B SCF Set carry flag 0, 1, 20
1C CCF Clear carry flag 0, 1, 21
1D not implemented
1E not implemented
1F NOP No operation 0, 1

state is 2 for opcodes 00h to 06h, 08h to 0Bh, 0Fh to 16h, 18h, 1Ah, and 1Ch, or if the current state is 3
for opcodes 04h to 06h, 12h, 13h, and 14h to 16h if the condition is met. We can write these
requirements as a table, showing the binary values of the opcodes, current states and flags:

The table is a list of all the combinations of current state, opcode, and flags that need to cause the next-
state zero bit (NS0) to be 1. An “X” means we don’t care what the bit value is. If the current state is 0,
we don’t care what the instruction is, the next-state 0 bit will always be a 1. The table can be simplified,
because some bits in the input can be either 1 or 0. For example, if the current state is 2, we don’t care
what the value of opcode bit 0 is, it can be either a 1 or a 0. Going over this table and simplifying it, we
get this:

114

Now we can write a logic equation for the next-state 0 bit, using AND-OR array logic. The equation
will be long. Here is the first part of it:

NS0 = NOT(S4) AND NOT(S3) AND NOT(S2) AND NOT(S1) AND NOT(S0) OR

 NOT(S4) AND NOT(S3) AND NOT(S2) AND NOT(S1) AND S0 AND OP4 AND

OP3 AND NOT(OP2) AND OP1 AND NOT(OP0) OR ...

We could implement this using a decoder for the current states. Then the equation would look like this:

NS0 = STATE0 OR STATE1 AND OP4 AND OP3 AND NOT(OP2) AND OP1 AND NOT(OP0) OR

STATE2 AND NOT(OP4) AND NOT(OP3) AND NOT(OP2) OR …

The rest of the next-state bits can be computed in a similar way.

In this processor, the next-state logic is implemented on 3 programmable AND-OR array ICs, which
are GAL16V8s. Next state logic can also be implemented with discrete logic ICs, or using a
programmable ROM. If using a ROM, the state, opcode and flags become the input address, and the
next-state outputs are the contents of the memory cells. This next-state logic could be implemented by a
single 16K by 8-bit EPROM.

Control signals logic explanation

The control signals logic in this processor takes as its only input the current state. The output of the
control logic is a set of 0 or 1 levels on the processor control lines. These lines are the multiplexer data
select addresses, the register write and program counter increment lines, and signals to create the
control signals for the system memory and input/output ports.

All outputs are created as logic levels, that is, 0s or 1s. The multiplexer address inputs can use these
levels directly. However, the processor registers require upgoing edges to be written. The control logic

115

board has a register write pulse machine that creates the edges from the control logic level outputs.
Also, the write signals for system memory and output ports require a timing sequence that is carried
over two states, and there is a write signal machine that carries this out.

Here is a figure that summarizes the control logic:

The one-bit control signal lines are in the column on the left. The processor states are in the row across
the top. To create the control signal logic, I started with the above table, with all the cells empty, and
went across state-by-state, filling in the 1s and 0s as appropriate for each state. Once filled in, for each
control signal line, there is now a series of 1s and 0s in its table row that show what that line should be
for each state. If it does not matter whether the control line is 1 or 0 for a particular state, that cell is left
blank (that is, a “don’t care”).

For example, look at state 0, the instruction fetch state. There are 15 control lines that need to be set to
0 or 1 for this state to perform its function.

First, there are a number of register write signals that must be de-asserted (made inactive – that is,
“don’t write this register in this state”). They are write signals for the instruction operands (OPR Lo Wr
and OPR Hi Wr), system memory (Wr), the accumulator (Acc Wr), and the carry flip-flop (Carry Wr).
Other de-asserted signals are /Acc Data Out (places accumulator data on the data bus – don’t what this
when reading data from memory), /PC load (used in jump instructions), /I-O Req, /Set carry and /Clear
carry.

Second, there are the asserted control signals OPC Wr (opcode write – this is what we are fetching
from the memory), PC Wr (increments the program counter at the end of the cycle), /Mem Req, and
/Rd, to tell the system memory to put data on the data bus – the opcode byte that is being fetched.

Third, there are the multiplexer address inputs that move data to the places needed to carry out the
fetch. In state 0, the only one we care about is Addr Src (address source). This control line selects the

116

address to put on the system address bus. If Addr Src is 0, the address comes from the current
instruction. If it is 1, the address comes from the program counter. So, in an instruction fetch, we want
the address to come from the program counter, so Addr Src needs to be 1.

The logic operations that determine the value of each control line are in the far right column. The
current state inputs to the control logic are active-low outputs from the state decoder (see the control
board schematic). That is, if the current state is 5, the decoder output for state 5 will be 0, and all the
other output lines will be 1.

Each control line is the one-bit result of the logic operation in the far right column. For example, the
active-low /Acc Data Out signal is the result of a four-input AND operation of states 9, 10, 13 and 14.
That is, /Acc Data Out will be one (inactive) only when all four states 9, 10, 13 and 14 are 1. If any of
these 4 states is the current state (is zero), the output of the AND operation will be 0, and the /Acc Data
Out signal will be zero (active). The next row, for the OPR Lo Wr signal, the logic operation is just the
inverse of the state 2 input. That is, when state 2 is the current state, the state 2 output from the state
decoder will be 0, NOT state 2 will be 1, and OPR Lo Wr will be 1. In all other cases (all other states)
the result of NOT 2 will be 0.

Each equation for each control signal is implemented with simple logic gates and inverters. For some
signals, such as /PC load the state itself is sufficient.

System write signal timing

This figure summarizes the timing of the system write signal machine:

117

Shown here is the flip-flop that creates the /WR signal (active-low) from the control logic WR level
output (active-high) and the inverted clock signal. Also shown is the latch that uses the /WR signal as
the latch enable for the control signals that need to be held steady over the two states that are used to
write to memory or output ports. In the timing diagram, the various edges listed are the upgoing edges
of the clock signals. That is, edge 0 is the upgoing edge in the Clock signal, edge 1 is the upgoing edge
in the Inv Clock signal, etc. The overall reason for this machine is to provide a clean write signal to
memory or output ports. This is done by having the memory request or input-output request signal
asserted and stable before the write signal is asserted, and the write signal de-asserted well before the
memory request or input-output request signal is de-asserted. The write signal needs to be asserted for
some minimum time depending on the type of memory or output port IC used. This scheme will have

118

the write signal asserted from edge 1 to edge 3, a full cycle time (500 nanoseconds at 2 MHz). This is
adequate for most ICs used with simple 8-bit systems.

Register write pulse timing

This diagram shows how the register write pulses are created from the register write machine flip-flops:

119

Special Programming Techniques

The CPUville 8-bit processor has a very simple architecture. This makes the processor easy to build
and understand, but makes programming more difficult. Especially, the processor lacks registers and
instructions to perform address indexing and stack operations.

Indexing

To perform address indexing, one needs to place the load or store instruction with the address to be
indexed in RAM and increment or decrement the address portion of the instruction as required. If the
instruction is placed away from the rest of the code, as it would need to be if the main program code is
in ROM, it needs to be followed by a jump instruction to return to the main code.

Here is an example taken from the system monitor program. This program is in ROM, so the
instructions to be indexed need to be in RAM. Locations 0x0800 to 0x08FF in RAM are reserved for
system monitor variables, including indexed store and load instructions.

First, a place for the RAM instruction must be created as one would for any other variable. The
variables are in the assembly language file for the ROM system monitor, at the end after an .org
0800h pseudo-operation that places them in the lowest page of RAM:

;The following section contains labels for RAM variables and other structures
.org 0800h ;Start of RAM

;RAM Variables
dp_value .dw 0000h
dp_10000s .db 00h
.
.
.
;Indexed store for load routine, must be in RAM
ld_indexed_stm stm 0000h

jmp ld_stm_back

Here we see a location established for a store instruction with the label ld_indexed_stm, followed by
a place for a jump instruction with the operand ld_stm_back. The ld_indexed_stm label is here in
order for the assembler to make the code that uses it, but these locations in RAM will just contain
garbage when the computer is powered up. The ROM code will have to initialize these locations with
the stm and jmp opcodes and the address operands before these instructions can be used.

Here is the section in the ROM that initializes the RAM instruction opcodes:

;Opcode initialization for RAM instructions
ldi 13h ;jmp opcode

 stm ld_indexed_stm+3 ;return jumps for indexed instructions
.
.
.

ldi 12h ;stm opcode
 stm ld_indexed_stm ;indexed store instructions

Here is the section in ROM that initializes the address operand of the RAM store instruction. The

120

address is obtained from the address variable:

ldm address
stm ld_indexed_stm+1
ldm address+1
stm ld_indexed_stm+2

Here is the section in ROM that initializes the address operand of the return jmp instruction. This
section of code needs to be written after a prior assembly, in order to know the target address, which
will be found by examining the the assembly list file:

ldi 00h ;address of ld_stm_back
stm ld_indexed_stm+4
ldi 03h
stm ld_indexed_stm+5

Here is the section in the ROM that uses and indexes the store instruction:

JMP ld_indexed_stm ;Store the byte in RAM
ld_stm_back: LDM ld_indexed_stm+1 ;Increment byte pointer, lo byte first

INC
STM ld_indexed_stm+1
LDM ld_indexed_stm+2 ;Increment hi byte if a carry occurred

when lo byte incremented
ADCIM 00H
STM ld_indexed_stm+2

The JMP ld_indexed_stm instruction performs the store operation by jumping to the store instruction
in RAM. The RAM jmp ld_stm_back instruction after the indexed stm instruction returns program
flow to the code in ROM. Then, the address operand of the RAM stm instruction is incremented by a
16-bit addition operation.

Subroutines

Calling subroutines in most processors is done with a stack operation. The instruction that calls the
subroutine pushes the program counter onto the stack, and after the subroutine is finished, the return
instruction pops the address off the stack and places it in the program counter. These instructions, and
others like push and pop, use a stack pointer stored in a processor register.

The CPUville 8-bit processor lacks a stack pointer register, and does not have the associated
instructions in its instruction set. Instead, the programmer must develop a means to call subroutines
using software.

While a full stack system could be implemented, in simple programs with minimal nesting of
subroutine calls, a simple system of macros for calls and returns will suffice. This is the system I used
when I wrote the 8-bit processor system monitor, and the pi calculation program.

TASM has the pseudo-operation .set that allows the programmer to create labels that can be assigned
values by assembly language instructions. This allows the call and return macros to be created easily.

The system monitor program has at most 3 levels of subroutine nesting. Without creating a true stack
pointer system and stack, I simply created call and return macros for three levels. Here is the code:

121

;Macro definitions for three levels of nested call and ret
#define call0(address) \return: .set $+15\ ldm return\ stm return_jump0+1\ ldm
return+1\ stm return_jump0+2
#defcont \ jmp address\ .dw $+2
#define ret0 \ jmp return_jump0
#define call1(address) \return: .set $+15\ ldm return\ stm return_jump1+1\ ldm
return+1\ stm return_jump1+2
#defcont \ jmp address\ .dw $+2
#define ret1 \ jmp return_jump1
#define call2(address) \return: .set $+15\ ldm return\ stm return_jump2+1\ ldm
return+1\ stm return_jump2+2
#defcont \ jmp address\ .dw $+2
#define ret2 \ jmp return_jump2

TASM macros are defined by using the #define directive, followed by the macro definition, followed
by the macro code statements, separated by \ characters. Additional lines of macro code can be added
using the #defcont directive.

The call macro does two things. It sets up the return address of the subroutine call, and jumps to the
subroutine. The ret macro causes a jump to the return address. Each call and return macro has a level
associated with it. The call macro for a certain level will create the return address for the return macro
to use for that level. So, call0 creates the return address for ret0, call1 creates the return address for
ret1, etc.

The first macro definition is call0(address). The macro operand address is the address label of the
subroutine that is being called.

The call macro has 7 statements:

return: .set $+15 sets the label return: to the 16-bit value of the return address for call0, which
the assembler calculates after the code has been assembled. $+15 points to the address data placed in
the code by the .dw $+2 pseudo-operation at the end of the macro definition. The label return: must
be defined before the first use of a call macro. In the ROM monitor code return: is defined at the start
of the code, where it refers to a no-operation placeholder instruction:

.org 0000h
return: .db 1fh ;placeholder for first definition of variable label
-- NOP

ldm return loads the low-byte of the return address into the accumulator.

stm return_jump0+1 stores the low byte of the return address in the RAM as the low byte of the
return jump instruction for call level 0.

ldm return+1 places the high byte of the return address into the accumulator.

stm return_jump0+2 stores the high byte of the return address in the RAM as the high byte of the
return jump instruction for call level 0.

jmp address is the instruction that jumps to the subroutine code.

.dw $+2 is a pseudo-operation that places the 16-bit value of the current program location plus 2 into

122

the code here. The current location plus 2 is the target of the return jump. The .dw $+2 value is in the
location referenced by the .set $+15 pseudo-operation at the beginning of the macro.

The definition of the ret0 macro is simply jmp return_jump0. This jumps to a jump instruction in
RAM with the return address operand that has been placed in it by the call0 macro.

The return: label must be reset to its original value after the macros have been placed in the code,
otherwise the assembler returns a syntax error. I reset the return: label at the end of the code, like this:

return: .set 0000h ;assembler needs variable label set back to original value
.end

To use the call and return macros one simply uses them like one would use the call and return
instructions in a more complex processor. Here is an example from the system monitor code:

;Print greeting
sm_lukewarm ldm sm_greeting

stm ws_inst+1
ldm sm_greeting+1
stm ws_inst+2
call0(write_string)

This section sets up the address of a string to be displayed by the write_string subroutine, then calls
it. The write_string subroutine uses a ret0 macro to return, so it needs to be called as a level 0
subroutine.

This scheme allows for easy addition of more call levels, by adding a new call and ret macros, with
the corresponding jmp return_jump variable instruction in RAM.

The main drawback of this scheme is that the programmer must keep track of which call levels are
currently active, to avoid calling a level that is already in use. This would over-write the return address
for the original call with a new address. The levels are not ordered, so a call2 subroutine can perform a
call0, and a call0 can perform a call2. But, a call2 cannot perform a call2. So, true recursion is not
allowed by this scheme. But it is enough for writing code with many subroutines.

If you have developed a scheme for true recursion, please let me know, and I will post it on the
CPUville website.

123

Instruction set table, sorted by opcode

124

Opcode (hex) Mnemonic Function Inst. length, bytes Clock cycles Flags affected
00 ADD Add memory to accumulator 3 5 C, Z, M
01 ADC Add memory and carry to accumulator 3 5 C, Z, M
02 SUB Subtract memory from accumulator 3 5 C, Z, M
03 SBB Subtract memory and borrow from accumulator 3 5 C, Z, M
04 AND Binary AND memory with accumulator 3 5 Z, M
05 OR Binary OR memory with accumulator 3 5 Z, M
06 XOR Binary XOR memory with accumulator 3 5 Z, M
07 NOT Complement accumulator 1 3 Z, M
08 ADDIM Add 8-bit value in instruction to accumulator 2 4 C, Z, M
09 ADCIM Add 8-bit value in instruction and carry to accumulator 2 4 C, Z, M
0A SUBIM Subtract 8-bit value in instruction from accumulator 2 4 C, Z, M
0B SBBIM Subtract 8-bit value in instruction and borrow from accumulator 2 4 C, Z, M
0C ANDIM Binary AND 8-bit value in instruction with accumulator 2 4 Z, M
0D ORIM Binary OR 8-bit value in instruction with accumulator 2 4 Z, M
0E XORIM Binary XOR 8-bit value in instruction with accumulator 2 4 Z, M
0F CMP Subtract 8-bit value in instruction from accumulator, set carry only 2 4 C
10 LDI Load 8-bit value in instruction into accumulator 2 4 Z, M
11 LDM Load accumulator from memory 3 5 Z, M
12 STM Store accumulator into memory 3 6
13 JMP Jump to memory location 3 5
14 JPZ Jump to memory location if zero 3 4 or 5
15 JPM Jump to memory location if minus 3 4 or 5
16 JPC Jump to memory location if carry 3 4 or 5
17 IN Load accumulator with 8-bit value from port 2 4 Z, M
18 OUT Send 8-bit value from accumulator to port 2 5
19 INC Add 1 to accumulator 1 3 C, Z, M
1A DEC Subtract 1 from accumulator 1 3 C, Z, M
1B SCF Set carry flag 1 3 C
1C CCF Clear carry flag 1 3 C
1D not implemented
1E not implemented
1F NOP No operation 1 2

Instruction set table, sorted by mnemonic

125

Mnemonic Opcode (hex) Function Inst. length, bytes Clock cycles Flags affected
ADC 01 Add memory and carry to accumulator 3 5 C, Z, M
ADCIM 09 Add 8-bit value in instruction and carry to accumulator 2 4 C, Z, M
ADD 00 Add memory to accumulator 3 5 C, Z, M
ADDIM 08 Add 8-bit value in instruction to accumulator 2 4 C, Z, M
AND 04 Binary AND memory with accumulator 3 5 Z, M
ANDIM 0C Binary AND 8-bit value in instruction with accumulator 2 4 Z, M
CCF 1C Clear carry flag 1 3 C
CMP 0F Subtract 8-bit value in instruction from accumulator, set carry only 2 4 C
DEC 1A Subtract 1 from accumulator 1 3 C, Z, M
IN 17 Load accumulator with 8-bit value from port 2 4 Z, M
INC 19 Add 1 to accumulator 1 3 C, Z, M
JMP 13 Jump to memory location 3 5
JPC 16 Jump to memory location if carry 3 4 or 5
JPM 15 Jump to memory location if minus 3 4 or 5
JPZ 14 Jump to memory location if zero 3 4 or 5
LDI 10 Load 8-bit value in instruction into accumulator 2 4 Z, M
LDM 11 Load accumulator from memory 3 5 Z, M
NOP 1F No operation 1 2
NOT 07 Complement accumulator 1 3 Z, M
OR 05 Binary OR memory with accumulator 3 5 Z, M
ORIM 0D Binary OR 8-bit value in instruction with accumulator 2 4 Z, M
OUT 18 Send 8-bit value from accumulator to port 2 5
SBB 03 Subtract memory and borrow from accumulator 3 5 C, Z, M
SBBIM 0B Subtract 8-bit value in instruction and borrow from accumulator 2 4 C, Z, M
SCF 1B Set carry flag 1 3 C
STM 12 Store accumulator into memory 3 6
SUB 02 Subtract memory from accumulator 3 5 C, Z, M
SUBIM 0A Subtract 8-bit value in instruction from accumulator 2 4 C, Z, M
XOR 06 Binary XOR memory with accumulator 3 5 Z, M
XORIM 0E Binary XOR 8-bit value in instruction with accumulator 2 4 Z, M

1D not implemented
1E not implemented

Selected Program Listings

ROM for 4K systems
0001 0000 ;Test programs for 8-bit TTL computer.
0002 0000 .ORG 0000H ;Get address from switches and jump to it
0003 0000 10 13 LDI 13H ;JMP instruction
0004 0002 12 00 08 STM 0800H ;Start of RAM
0005 0005 17 00 IN 00H ;Low byte of jump target
0006 0007 12 01 08 STM 0801H
0007 000A 17 01 IN 01H ;High byte of jump target
0008 000C 12 02 08 STM 0802H ;Full jump instruction in place now
0009 000F 13 00 08 JMP 0800H ;Jump to the jump instruction
0010 0012 ;Simple port reflector
0011 0012 17 00 LOOP: IN 00H
0012 0014 18 00 OUT 00H
0013 0016 17 01 IN 01H
0014 0018 18 01 OUT 01H
0015 001A 13 12 00 JMP LOOP
0016 001D ;Simple counter -- run with slow clock
0017 001D 10 00 LDI 00H
0018 001F 18 00 LOOPA: OUT 00H
0019 0021 19 INC
0020 0022 13 1F 00 JMP LOOPA
0021 0025 ;Two-byte up counter -- run with fast clock
0022 0025 10 00 LDI 00H
0023 0027 12 00 08 STM 0800H ;Hi byte
0024 002A 18 01 OUT 01H ;Clear port 1 LEDs
0025 002C 18 00 LOOPB: OUT 00H ;Output low byte
0026 002E 19 INC
0027 002F 14 35 00 JPZ NEXTB ;If zero, jump to increment high byte
0028 0032 13 2C 00 JMP LOOPB ;Low-byte increment loop
0029 0035 11 00 08 NEXTB: LDM 0800H ;Get high byte from memory
0030 0038 19 INC
0031 0039 18 01 OUT 01H ;Output high byte to port 1 LEDs
0032 003B 12 00 08 STM 0800H ;Store high byte
0033 003E 10 00 LDI 00H
0034 0040 13 2C 00 JMP LOOPB ;Go back to low-byte increment loop
0035 0043 ;8-bit highest factor routine

126

0036 0043 ;Factor test
0037 0043 17 00 FACSTRT:IN 00H ;Number to factor
0038 0045 12 0A 08 STM ORIG
0039 0048 12 0B 08 STM TESTF
0040 004B 11 0B 08 LOOP15: LDM TESTF
0041 004E 1A DEC
0042 004F 12 0B 08 STM TESTF
0043 0052 11 0A 08 LDM ORIG
0044 0055 02 0B 08 LOOP16: SUB TESTF
0045 0058 14 61 00 JPZ DONE ;Factor found
0046 005B 16 55 00 JPC LOOP16 ;For A - B, carry set if A >= B
0047 005E 13 4B 00 JMP LOOP15 ;No carry, means A < B, and not a factor
0048 0061 11 0B 08 DONE: LDM TESTF
0049 0064 18 00 OUT 00H
0050 0066 13 43 00 JMP FACSTRT
0051 0069 ;Test for serial interface with 8-bit code
0052 0069 ;Set port to 9600 baud, 8-bit, no parity, 1 stop bit
0053 0069 10 4E LDI 4EH ;1 stop bit, no parity, 8-bit char, 16x baud
0054 006B 18 03 OUT 03H ;write to UART control port
0055 006D 10 37 LDI 37H ;enable receive and transmit
0056 006F 18 03 OUT 03H ;write to control port
0057 0071 17 03 LOOP1: IN 03H ;get status
0058 0073 0C 02 ANDIM 02H ;check RxRDY bit
0059 0075 14 71 00 JPZ LOOP1 ;not ready, loop
0060 0078 17 02 IN 02H ;get char from data port
0061 007A 18 00 OUT 00H ;put on LEDs
0062 007C 12 06 08 STM TEMP ;store the character
0063 007F 17 03 LOOP2: IN 03H ;get status
0064 0081 0C 01 ANDIM 01H ;check TxRDY bit
0065 0083 14 7F 00 JPZ LOOP2 ;loop if not ready
0066 0086 11 06 08 LDM TEMP ;get char back
0067 0089 18 02 OUT 02H ;send to UART for output
0068 008B 13 71 00 JMP LOOP1 ;start over
0069 008E ;Program loader
0070 008E ;Takes input from serial port, creates byte values from hex character pairs
0071 008E ;Loads byte values sequentially into RAM starting at 0x0810
0072 008E ;Jumps to location 0x0810 to start execution upon receiving return character
0073 008E ;Quits without execution if invalid hex character input received
0074 008E ;Setup routine for serial port
0075 008E 10 4E LDI 4EH ;1 stop bit, no parity, 8-bit char, 16x baud

127

0076 0090 18 03 OUT 03H ;write to UART control port
0077 0092 10 37 LDI 37H ;enable receive and transmit
0078 0094 18 03 OUT 03H ;write to control port
0079 0096 ;Need to put instruction to store bytes in RAM so can increment the target address
0080 0096 10 12 LDI 12H ;STM instruction
0081 0098 12 00 08 STM STORE_BYTE
0082 009B 10 10 LDI 10H ;Low byte of storage buffer start address
0083 009D 12 01 08 STM STORE_BYTE+1
0084 00A0 10 08 LDI 08H ;Hi byte of storage buffer start address
0085 00A2 12 02 08 STM STORE_BYTE+2
0086 00A5 ;Need to set return jump after STORE_BYTE
0087 00A5 10 13 LDI 13H ;JMP instruction for return
0088 00A7 12 03 08 STM STORE_BYTE+3
0089 00AA 11 9E 01 LDM RETURN ;Lo byte of return address
0090 00AD 12 04 08 STM STORE_BYTE+4
0091 00B0 11 9F 01 LDM RETURN+1 ;Hi byte of return address
0092 00B3 12 05 08 STM STORE_BYTE+5
0093 00B6 10 10 LDI 16
0094 00B8 12 09 08 STM BYTE_COUNTER ;initialize line length variable
0095 00BB 17 03 GET_HI: IN 03H ;Get hi-order nybble of pair
0096 00BD 0C 02 ANDIM 02H ;check RxRDY bit
0097 00BF 14 BB 00 JPZ GET_HI ;not ready, loop
0098 00C2 17 02 IN 02H ;get char from data port
0099 00C4 12 06 08 STM TEMP ;Store character
0100 00C7 0A 0D SUBIM 0DH ;Carriage return?
0101 00C9 14 B2 01 JPZ RUN ;Yes, run code
0102 00CC 17 03 LOOP3: IN 03H ;No, output character and validate
0103 00CE 0C 01 ANDIM 01H ;check TxRDY bit
0104 00D0 14 CC 00 JPZ LOOP3 ;loop if not ready
0105 00D3 11 06 08 LDM TEMP ;get char back
0106 00D6 18 02 OUT 02H ;send to UART for output
0107 00D8 ;Code to validate hex character
0108 00D8 0F 30 CMP 30H ;Lower limit of hex characters
0109 00DA 16 E0 00 JPC NEXT1 ;Char >= 30H, possibly valid
0110 00DD 13 FE 00 JMP INVALID ;Char < 30H, invalid hex char
0111 00E0 0F 47 NEXT1: CMP 47H ;ASCII for "G"
0112 00E2 16 FE 00 JPC INVALID ;Char is G or greater, invalid
0113 00E5 0F 41 CMP 41H ;ASCII for "A"
0114 00E7 16 F2 00 JPC VALIDAF_HI ;Char is valid A-F
0115 00EA 0F 3A CMP 3AH ;ASCII for ":"

128

0116 00EC 16 FE 00 JPC INVALID ;Char is ":" or greater, but < "A", invalid
0117 00EF 13 F9 00 JMP VALID09_HI ;Char is valid 0-9
0118 00F2 0C 0F VALIDAF_HI: ANDIM 0FH ;Mask off high bits
0119 00F4 08 09 ADDIM 9 ;Adjust ASCII to binary value
0120 00F6 13 01 01 JMP SHIFT_HI
0121 00F9 0C 0F VALID09_HI: ANDIM 0FH ;Mask off high bits
0122 00FB 13 01 01 JMP SHIFT_HI
0123 00FE 13 B5 01 INVALID: JMP ERROR ;Invalid hex char, quit
0124 0101 12 07 08 SHIFT_HI: STM BYTE ;Will eventually contain the byte to load
0125 0104 12 06 08 STM TEMP ;Value to add
0126 0107 10 10 LDI 10H ;Multiply x 16 to shift into high-order nybble
0127 0109 12 08 08 STM COUNTER
0128 010C 11 08 08 MULTLOOP: LDM COUNTER
0129 010F 1A DEC
0130 0110 14 22 01 JPZ GET_LO ;Have added 16 times, done
0131 0113 12 08 08 STM COUNTER
0132 0116 11 06 08 LDM TEMP ;Original nybble
0133 0119 00 07 08 ADD BYTE ;Add to BYTE and store
0134 011C 12 07 08 STM BYTE
0135 011F 13 0C 01 JMP MULTLOOP ;Keep adding
0136 0122 17 03 GET_LO: IN 03H ;Get lo-order nybble of pair
0137 0124 0C 02 ANDIM 02H ;check RxRDY bit
0138 0126 14 22 01 JPZ GET_LO ;not ready, loop
0139 0129 17 02 IN 02H ;get char from data port
0140 012B 12 06 08 STM TEMP ;Store character
0141 012E 17 03 LOOP4: IN 03H ;Output character
0142 0130 0C 01 ANDIM 01H ;check TxRDY bit
0143 0132 14 2E 01 JPZ LOOP4
0144 0135 11 06 08 LDM TEMP ;When ready, retrieve character and output
0145 0138 18 02 OUT 02H
0146 013A 17 03 LOOP5: IN 03H
0147 013C 0C 01 ANDIM 01H
0148 013E 14 3A 01 JPZ LOOP5
0149 0141 10 20 LDI 20H ;Space character
0150 0143 18 02 OUT 02H ;send to UART for output
0151 0145 ;Check if 16 bytes have been displayed. If so, write newline
0152 0145 11 09 08 LDM BYTE_COUNTER ;Check if 16 bytes have been displayed
0153 0148 1A DEC
0154 0149 12 09 08 STM BYTE_COUNTER
0155 014C 14 52 01 JPZ NEXT4 ;Yes, reset counter and write newline

129

0156 014F 13 6D 01 JMP NEXT5 ;No, keep going
0157 0152 10 10 NEXT4: LDI 16
0158 0154 12 09 08 STM BYTE_COUNTER
0159 0157 17 03 LOOP6: IN 03H
0160 0159 0C 01 ANDIM 01H
0161 015B 14 57 01 JPZ LOOP6
0162 015E 10 0D LDI 0DH ;Return character
0163 0160 18 02 OUT 02H ;send to UART for output
0164 0162 17 03 LOOP7: IN 03H
0165 0164 0C 01 ANDIM 01H
0166 0166 14 62 01 JPZ LOOP7
0167 0169 10 0A LDI 0AH ;Linefeed character
0168 016B 18 02 OUT 02H ;send to UART for output
0169 016D ;Code to validate hex character
0170 016D 11 06 08 NEXT5: LDM TEMP ;Retrieve character and validate
0171 0170 0F 30 CMP 30H ;Lower limit of hex characters
0172 0172 16 78 01 JPC NEXT2 ;Char >= 30H, possibly valid
0173 0175 13 FE 00 JMP INVALID ;Char < 30H, invalid hex char
0174 0178 0F 47 NEXT2: CMP 47H ;ASCII for "G"
0175 017A 16 FE 00 JPC INVALID ;Char is G or greater, invalid
0176 017D 0F 41 CMP 41H ;ASCII for "A"
0177 017F 16 8A 01 JPC VALIDAF_LO ;Char is valid A-F
0178 0182 0F 3A CMP 3AH ;ASCII for ":"
0179 0184 16 FE 00 JPC INVALID ;Char is ":" or greater, but < "A", invalid
0180 0187 13 94 01 JMP VALID09_LO ;Char is valid 0-9
0181 018A 0C 0F VALIDAF_LO: ANDIM 0FH ;Mask off high bits
0182 018C 08 09 ADDIM 9 ;Now lo nybble correct
0183 018E 00 07 08 ADD BYTE ;Combine with hi nybble stored in BYTE
0184 0191 13 99 01 JMP STORE ;Store the byte in RAM
0185 0194 0C 0F VALID09_LO: ANDIM 0FH ;Mask off high bits
0186 0196 00 07 08 ADD BYTE ;Now full byte assembled
0187 0199 18 00 STORE: OUT 00H ;Display on LEDs
0188 019B 13 00 08 JMP STORE_BYTE ;Store the byte in RAM
0189 019E A0 01 RETURN: .DW $+2 ;Address to return from storage instruction
0190 01A0 11 01 08 LDM STORE_BYTE+1 ;Increment byte pointer, lo byte first
0191 01A3 19 INC
0192 01A4 12 01 08 STM STORE_BYTE+1
0193 01A7 11 02 08 LDM STORE_BYTE+2 ;Increment hi byte if a carry occurred when lo
byte incremented
0194 01AA 09 00 ADCIM 00H

130

0195 01AC 12 02 08 STM STORE_BYTE+2
0196 01AF 13 BB 00 JMP GET_HI
0197 01B2 13 10 08 RUN: JMP 0810H ;Run program
0198 01B5 18 00 ERROR: OUT 00H ;Display erroneous character on LEDs
0199 01B7 13 B7 01 HALT: JMP HALT ;Halt
0200 0800 .ORG 0800H
0201 0800 000000000000STORE_BYTE: .DB 0,0,0,0,0,0 ;Six spaces for storage instruction and return
0202 0806 00 TEMP: .DB 00H ;Temp storage for character, data
0203 0807 00 BYTE: .DB 00H ;For multiplication (shifting)
0204 0808 00 COUNTER: .DB 00H ;For multiplication (shifting)
0205 0809 00 BYTE_COUNTER .DB 00H ;For length of display line
0206 080A 00 ORIG: .DB 00H
0207 080B 00 TESTF: .DB 00H
0208 080C .END
tasm: Number of errors = 0

adder
0001 0000 ;Simple byte adder program
0002 0000 ;Adds bytes on input port switches
0003 0000 ;Displays output on LEDs
0004 0810 .ORG 0810H ;Location in RAM where program 4K loader places code
0005 0810 17 00 LOOP: IN 00H ;Get first byte from right-hand switches
0006 0812 12 25 08 STM TEMP ;Store byte in RAM
0007 0815 17 01 IN 01H ;Get second byte from left-hand switches
0008 0817 00 25 08 ADD TEMP ;Add the bytes
0009 081A 18 00 OUT 00H ;lower 8-bits of sum to right-hand LEDs
0010 081C 10 00 LDI 00H ;load accumulator with zero
0011 081E 09 00 ADCIM 00H ;Add carry to zero
0012 0820 18 01 OUT 01H ;upper 8-bits of sum to left-hand LEDs
0013 0822 13 10 08 JMP LOOP ;do it again
0014 0825 00 TEMP: .DB 00H ;Location of TEMP variable
0015 0826 .END ;End of code
0016 0826
tasm: Number of errors = 0

131

ROM System Monitor
0001 0000 ;ROM system monitor
0002 0000 ;Macro definitions for three levels of nested call and ret
0003 0000 #define call0(address) \return: .set $+15\ ldm return\ stm return_jump0+1\ ldm return+1\
stm return_jump0+2
0004 0000 #defcont \ jmp address\ .dw $+2
0005 0000 #define ret0 \ jmp return_jump0
0006 0000 #define call1(address) \return: .set $+15\ ldm return\ stm return_jump1+1\ ldm return+1\
stm return_jump1+2
0007 0000 #defcont \ jmp address\ .dw $+2
0008 0000 #define ret1 \ jmp return_jump1
0009 0000 #define call2(address) \return: .set $+15\ ldm return\ stm return_jump2+1\ ldm return+1\
stm return_jump2+2
0010 0000 #defcont \ jmp address\ .dw $+2
0011 0000 #define ret2 \ jmp return_jump2
0012 0000
0013 0000 ;Buffer location defined by these constant values
0014 0000 ;Needs to be in RAM above variables and variable instructions
0015 0000 buff_low: .equ 80h ;low byte of buffer address
0016 0000 buff_high: .equ 08h ;high byte of buffer address
0017 0000 buffer: .equ 0880h ;two-byte address constant
0018 0000 .org 0000h
0019 0000
0020 0000 1F return: .db 1fh ;placeholder for first definition of variable label -- NOP
0021 0001
0022 0001 ;Initialize port
0023 0001 10 4E LDI 4EH ;1 stop bit, no parity, 8-bit char, 16x baud
0024 0003 18 03 OUT 03H ;write to UART control port
0025 0005 10 37 LDI 37H ;enable receive and transmit
0026 0007 18 03 OUT 03H ;write to control port
0027 0009
0028 0009 ;Opcode initialization for RAM instructions
0029 0009 10 13 ldi 13h ;jmp opcode
0030 000B 12 1E 08 stm ld_indexed_stm+3 ;return jumps for indexed instructions
0031 000E 12 24 08 stm d_indexed_ldm+3
0032 0011 12 2A 08 stm d_indexed_stm+3
0033 0014 12 30 08 stm bl_indexed_stm+3
0034 0017 12 36 08 stm ws_inst+3
0035 001A 12 3C 08 stm gl_indexed_stm+3

132

0036 001D 12 3F 08 stm return_jump0 ;other variable jumps
0037 0020 12 42 08 stm return_jump1
0038 0023 12 45 08 stm return_jump2
0039 0026 12 18 08 stm run_jump
0040 0029 10 12 ldi 12h ;stm opcode
0041 002B 12 1B 08 stm ld_indexed_stm ;indexed store instructions
0042 002E 12 27 08 stm d_indexed_stm
0043 0031 12 2D 08 stm bl_indexed_stm
0044 0034 12 39 08 stm gl_indexed_stm
0045 0037 10 11 ldi 11h ;ldm opcode
0046 0039 12 21 08 stm d_indexed_ldm
0047 003C 12 33 08 stm ws_inst
0048 003F 10 00 ldi 00h ;address of ld_stm_back
0049 0041 12 1F 08 stm ld_indexed_stm+4
0050 0044 10 03 ldi 03h
0051 0046 12 20 08 stm ld_indexed_stm+5
0052 0049 10 59 ldi 59h ;address of d_ldm_back
0053 004B 12 25 08 stm d_indexed_ldm+4
0054 004E 10 01 ldi 01h
0055 0050 12 26 08 stm d_indexed_ldm+5
0056 0053 10 78 ldi 78h ;address of d_stm_back
0057 0055 12 2B 08 stm d_indexed_stm+4
0058 0058 10 01 ldi 01h
0059 005A 12 2C 08 stm d_indexed_stm+5
0060 005D 10 B2 ldi 0b2h ;address of bl_back
0061 005F 12 31 08 stm bl_indexed_stm+4
0062 0062 10 04 ldi 04h
0063 0064 12 32 08 stm bl_indexed_stm+5
0064 0067 10 F1 ldi 0f1h ;address of ws_back
0065 0069 12 37 08 stm ws_inst+4
0066 006C 10 05 ldi 05h
0067 006E 12 38 08 stm ws_inst+5
0068 0071 10 C0 ldi 0C0h ;address of gl_back
0069 0073 12 3D 08 stm gl_indexed_stm+4
0070 0076 10 05 ldi 05h
0071 0078 12 3E 08 stm gl_indexed_stm+5
0072 007B
0073 007B ;Print greeting
0074 007B 11 36 07 sm_lukewarm ldm sm_greeting
0075 007E 12 34 08 stm ws_inst+1

133

0076 0081 11 37 07 ldm sm_greeting+1
0077 0084 12 35 08 stm ws_inst+2
0078 0087 call0(write_string)
0078 0087
0078 0087 11 96 00
0078 008A 12 40 08
0078 008D 11 97 00
0078 0090 12 41 08
0078 0093 13 E7 05
0078 0096 98 00
0079 0098
0080 0098 ;Warm start for system monitor, re-entry point after commands have finished
0081 0098 ;Prompt for routine number input
0082 0098 11 68 07 sm_warm ldm sm_prompt
0083 009B 12 34 08 stm ws_inst+1
0084 009E 11 69 07 ldm sm_prompt+1
0085 00A1 12 35 08 stm ws_inst+2
0086 00A4 call0(write_string)
0086 00A4
0086 00A4 11 B3 00
0086 00A7 12 40 08
0086 00AA 11 B4 00
0086 00AD 12 41 08
0086 00B0 13 E7 05
0086 00B3 B5 00
0087 00B5
0088 00B5 ;Get character and jump to monitor routine
0089 00B5 17 03 sm_chk_loop: in 03h ;get status
0090 00B7 0C 02 andim 02h ;check RxRDY
0091 00B9 14 B5 00 jpz sm_chk_loop
0092 00BC 17 02 in 02h ;get char from port and echo
0093 00BE 12 11 08 stm choice
0094 00C1 17 03 sm_echo_loop in 03h
0095 00C3 0C 01 andim 01h ;check TxRDY
0096 00C5 14 C1 00 jpz sm_echo_loop
0097 00C8 11 11 08 ldm choice
0098 00CB 18 02 out 02h
0099 00CD 0F 35 cmp '5'
0100 00CF 16 15 03 jpc sm_bload
0101 00D2 0F 34 cmp '4'

134

0102 00D4 16 09 02 jpc sm_load
0103 00D7 0F 33 cmp '3'
0104 00D9 16 F7 01 jpc sm_run
0105 00DC 0F 32 cmp '2'
0106 00DE 16 E4 00 jpc sm_dump
0107 00E1 13 98 00 jmp sm_warm ;any number other than 2 to 5 results in warm restart
0108 00E4
0109 00E4 ;Memory dump routine
0110 00E4 ;Get address from input string
0111 00E4 13 E2 04 sm_dump jmp get_address
0112 00E7 11 0E 08 d_addr_back ldm address
0113 00EA 12 22 08 stm d_indexed_ldm+1
0114 00ED 11 0F 08 ldm address+1
0115 00F0 12 23 08 stm d_indexed_ldm+2
0116 00F3
0117 00F3 ;Dump 16 lines of 16 characters each
0118 00F3 ;Set up line counter
0119 00F3 10 10 ldi 16
0120 00F5 12 14 08 stm line_counter
0121 00F8 ;Loop for putting a memory dump line in the buffer
0122 00F8 ;Start with 4 characters of the starting address of the line, followed by space
0123 00F8 11 23 08 d_line_loop ldm d_indexed_ldm+2 ;high byte of memory address
0124 00FB 12 12 08 stm byte
0125 00FE call0(byte_to_hex_pair)
0125 00FE
0125 00FE 11 0D 01
0125 0101 12 40 08
0125 0104 11 0E 01
0125 0107 12 41 08
0125 010A 13 B4 06
0125 010D 0F 01
0126 010F 11 0A 08 ldm char_pair
0127 0112 12 80 08 stm buffer ;start of line
0128 0115 11 0B 08 ldm char_pair+1
0129 0118 12 81 08 stm buffer+1
0130 011B 11 22 08 ldm d_indexed_ldm+1 ;low byte of memory address
0131 011E 12 12 08 stm byte
0132 0121 call0(byte_to_hex_pair)
0132 0121
0132 0121 11 30 01

135

0132 0124 12 40 08
0132 0127 11 31 01
0132 012A 12 41 08
0132 012D 13 B4 06
0132 0130 32 01
0133 0132 11 0A 08 ldm char_pair
0134 0135 12 82 08 stm buffer+2
0135 0138 11 0B 08 ldm char_pair+1
0136 013B 12 83 08 stm buffer+3
0137 013E 10 20 ldi 20h ;space character
0138 0140 12 84 08 stm buffer+4
0139 0143 ;Set up for getting 16 memory bytes, converting to characters, and putting in string
buffer
0140 0143 10 80 ldi buff_low
0141 0145 08 05 addim 5
0142 0147 12 28 08 stm d_indexed_stm+1 ;low byte of location of first character in output
string
0143 014A 10 08 ldi buff_high
0144 014C 09 00 adcim 0 ;16-bit addition
0145 014E 12 29 08 stm d_indexed_stm+2 ;high byte of location of first character in output
string
0146 0151 10 10 ldi 16
0147 0153 12 16 08 stm byte_counter ;number of bytes to get, convert, and display in one
line
0148 0156 13 21 08 d_byte_loop: jmp d_indexed_ldm ;get byte from memory
0149 0159 12 12 08 d_ldm_back: stm byte
0150 015C call0(byte_to_hex_pair) ;convert to hex pair
0150 015C
0150 015C 11 6B 01
0150 015F 12 40 08
0150 0162 11 6C 01
0150 0165 12 41 08
0150 0168 13 B4 06
0150 016B 6D 01
0151 016D 10 03 ldi 3
0152 016F 12 17 08 stm nybble_counter
0153 0172 11 0A 08 ldm char_pair
0154 0175 13 27 08 d_nybble_loop: jmp d_indexed_stm ;store char of byte in string buffer
0155 0178 11 28 08 d_stm_back: ldm d_indexed_stm+1 ;increment pointer by 16-bit incrementation
0156 017B 19 inc

136

0157 017C 12 28 08 stm d_indexed_stm+1
0158 017F 11 29 08 ldm d_indexed_stm+2
0159 0182 09 00 adcim 0
0160 0184 12 29 08 stm d_indexed_stm+2 ;pointing to next spot in buffer
0161 0187 11 17 08 ldm nybble_counter
0162 018A 1A dec ;all three characters stored (hex chars plus space)?
0163 018B 14 A1 01 jpz d_nybble_done ;yes, next byte
0164 018E 12 17 08 stm nybble_counter ;no, place next character or space
0165 0191 0A 01 subim 1 ;if nybble count = 1, put a space next
0166 0193 14 9C 01 jpz d_put_space
0167 0196 11 0B 08 ldm char_pair+1 ;otherwise, get next char and store
0168 0199 13 75 01 jmp d_nybble_loop
0169 019C 10 20 d_put_space: ldi 20h ;space character
0170 019E 13 75 01 jmp d_nybble_loop
0171 01A1 11 22 08 d_nybble_done: ldm d_indexed_ldm+1 ;increment memory pointer
0172 01A4 19 inc
0173 01A5 12 22 08 stm d_indexed_ldm+1
0174 01A8 11 23 08 ldm d_indexed_ldm+2
0175 01AB 09 00 adcim 0
0176 01AD 12 23 08 stm d_indexed_ldm+2
0177 01B0 11 16 08 ldm byte_counter
0178 01B3 1A dec
0179 01B4 14 BD 01 jpz d_line_done
0180 01B7 12 16 08 stm byte_counter
0181 01BA 13 56 01 jmp d_byte_loop
0182 01BD 10 0D d_line_done: ldi 0dh ;newline characters
0183 01BF 12 B4 08 stm buffer+52
0184 01C2 10 0A ldi 0ah
0185 01C4 12 B5 08 stm buffer+53
0186 01C7 10 00 ldi 0
0187 01C9 12 B6 08 stm buffer+54 ;where the end of the line will be
0188 01CC ;Write string to screen
0189 01CC 10 80 ldi buff_low
0190 01CE 12 34 08 stm ws_inst+1
0191 01D1 10 08 ldi buff_high
0192 01D3 12 35 08 stm ws_inst+2
0193 01D6 call0(write_string)
0193 01D6
0193 01D6 11 E5 01
0193 01D9 12 40 08

137

0193 01DC 11 E6 01
0193 01DF 12 41 08
0193 01E2 13 E7 05
0193 01E5 E7 01
0194 01E7
0195 01E7 ;Check if 16 lines done
0196 01E7 11 14 08 ldm line_counter
0197 01EA 1A dec
0198 01EB 14 F4 01 jpz d_done
0199 01EE 12 14 08 stm line_counter
0200 01F1 13 F8 00 jmp d_line_loop
0201 01F4 d_done:
0202 01F4 13 98 00 error: jmp sm_warm
0203 01F7
0204 01F7 ;Monitor routine to jump and execute code
0205 01F7 ;Gets target address from terminal
0206 01F7
0207 01F7 13 E2 04 sm_run jmp get_address
0208 01FA 11 0E 08 run_addr_back ldm address
0209 01FD 12 19 08 stm run_jump+1
0210 0200 11 0F 08 ldm address+1
0211 0203 12 1A 08 stm run_jump+2
0212 0206 13 18 08 jmp run_jump
0213 0209
0214 0209 ;Routine to get hex char pairs from input and load bytes in RAM
0215 0209 ;Get address first
0216 0209 13 E2 04 sm_load jmp get_address
0217 020C 11 0E 08 ld_addr_back ldm address
0218 020F 12 1C 08 stm ld_indexed_stm+1
0219 0212 11 0F 08 ldm address+1
0220 0215 12 1D 08 stm ld_indexed_stm+2
0221 0218 ;Initialize display bytes counter
0222 0218 10 10 ldi 10h ;16 bytes per line
0223 021A 12 16 08 stm byte_counter
0224 021D ;Get characters
0225 021D ;First character of pair
0226 021D 17 03 ld_get_hi: IN 03H ;Get hi-order nybble of pair
0227 021F 0C 02 ANDIM 02H ;check RxRDY bit
0228 0221 14 1D 02 JPZ ld_get_hi ;not ready, loop
0229 0224 17 02 IN 02H ;get char from data port

138

0230 0226 12 10 08 STM temp ;Store character
0231 0229 0A 0D SUBIM 0DH ;Carriage return?
0232 022B 14 12 03 JPZ ld_done ;Yes, return to monitor
0233 022E 17 03 ld_loop_1: IN 03H ;No, output character and validate
0234 0230 0C 01 ANDIM 01H ;check TxRDY bit
0235 0232 14 2E 02 JPZ ld_loop_1 ;loop if not ready
0236 0235 11 10 08 LDM temp ;get char back
0237 0238 18 02 OUT 02H ;send to UART for output
0238 023A ;Code to validate hex character
0239 023A 0F 30 CMP 30H ;Lower limit of hex characters
0240 023C 16 42 02 JPC ld_next_1 ;Char >= 30H, possibly valid
0241 023F 13 60 02 JMP ld_invalid ;Char < 30H, invalid hex char
0242 0242 0F 47 ld_next_1: CMP 47H ;ASCII for "G"
0243 0244 16 60 02 JPC ld_invalid ;Char is G or greater, invalid
0244 0247 0F 41 CMP 41H ;ASCII for "A"
0245 0249 16 54 02 JPC ld_validAF_hi ;Char is valid A-F
0246 024C 0F 3A CMP 3AH ;ASCII for ":"
0247 024E 16 60 02 JPC ld_invalid ;Char is ":" or greater, but < "A", invalid
0248 0251 13 5B 02 JMP ld_valid09_hi ;Char is valid 0-9
0249 0254 0C 0F ld_validAF_hi: ANDIM 0FH ;Mask off high bits
0250 0256 08 09 ADDIM 9 ;Adjust ASCII to binary value
0251 0258 13 63 02 JMP ld_shift_hi
0252 025B 0C 0F ld_valid09_hi: ANDIM 0FH ;Mask off high bits
0253 025D 13 63 02 JMP ld_shift_hi
0254 0260 13 12 03 ld_invalid: JMP ld_error ;Invalid hex char, quit
0255 0263 12 12 08 ld_shift_hi: STM byte ;Will eventually contain the byte to load
0256 0266 12 10 08 STM temp ;Value to add
0257 0269 10 10 LDI 10H ;Multiply x 16 to shift into high-order nybble
0258 026B 12 13 08 STM counter
0259 026E 11 13 08 ld_multloop: LDM counter
0260 0271 1A DEC
0261 0272 14 84 02 JPZ ld_get_lo ;Have added 16 times, done
0262 0275 12 13 08 STM counter
0263 0278 11 10 08 LDM temp ;Original nybble
0264 027B 00 12 08 ADD byte ;Add to BYTE and store
0265 027E 12 12 08 STM byte
0266 0281 13 6E 02 JMP ld_multloop ;Keep adding
0267 0284 17 03 ld_get_lo: IN 03H ;Get lo-order nybble of pair
0268 0286 0C 02 ANDIM 02H ;check RxRDY bit
0269 0288 14 84 02 JPZ ld_get_lo ;not ready, loop

139

0270 028B 17 02 IN 02H ;get char from data port
0271 028D 12 10 08 STM temp ;Store character
0272 0290 17 03 ld_loop2: IN 03H ;Output character
0273 0292 0C 01 ANDIM 01H ;check TxRDY bit
0274 0294 14 90 02 JPZ ld_loop2
0275 0297 11 10 08 LDM temp ;When ready, retrieve character and output
0276 029A 18 02 OUT 02H
0277 029C 17 03 ld_loop3: IN 03H
0278 029E 0C 01 ANDIM 01H
0279 02A0 14 9C 02 JPZ ld_loop3
0280 02A3 10 20 LDI 20H ;Space character
0281 02A5 18 02 OUT 02H ;send to UART for output
0282 02A7 11 16 08 ldm byte_counter ;Check if 16 bytes have been displayed
0283 02AA 1A dec
0284 02AB 12 16 08 stm byte_counter
0285 02AE 14 B4 02 jpz ld_next4 ;Yes, reset counter and write newline
0286 02B1 13 CF 02 jmp ld_next5 ;No, keep going
0287 02B4 10 10 ld_next4: ldi 10h
0288 02B6 12 16 08 stm byte_counter
0289 02B9 ;Write newline
0290 02B9 17 03 ld_loop4: IN 03H
0291 02BB 0C 01 ANDIM 01H
0292 02BD 14 B9 02 JPZ ld_loop4
0293 02C0 10 0D LDI 0DH ;Return character
0294 02C2 18 02 OUT 02H ;send to UART for output
0295 02C4 17 03 ld_loop5: IN 03H
0296 02C6 0C 01 ANDIM 01H
0297 02C8 14 C4 02 JPZ ld_loop5
0298 02CB 10 0A LDI 0AH ;Linefeed character
0299 02CD 18 02 OUT 02H ;send to UART for output
0300 02CF ;Code to validate hex character
0301 02CF 11 10 08 ld_next5: LDM temp ;Retrieve character and validate
0302 02D2 0F 30 CMP 30H ;Lower limit of hex characters
0303 02D4 16 DA 02 JPC ld_next2 ;Char >= 30H, possibly valid
0304 02D7 13 60 02 JMP ld_invalid ;Char < 30H, invalid hex char
0305 02DA 0F 47 ld_next2: CMP 47H ;ASCII for "G"
0306 02DC 16 60 02 JPC ld_invalid ;Char is G or greater, invalid
0307 02DF 0F 41 CMP 41H ;ASCII for "A"
0308 02E1 16 EC 02 JPC ld_validAF_lo ;Char is valid A-F
0309 02E4 0F 3A CMP 3AH ;ASCII for ":"

140

0310 02E6 16 60 02 JPC ld_invalid ;Char is ":" or greater, but < "A", invalid
0311 02E9 13 F6 02 JMP ld_valid09_lo ;Char is valid 0-9
0312 02EC 0C 0F ld_validAF_lo: ANDIM 0FH ;Mask off high bits
0313 02EE 08 09 ADDIM 9 ;Now lo nybble correct
0314 02F0 00 12 08 ADD byte ;Combine with hi nybble stored in BYTE
0315 02F3 13 1B 08 JMP ld_indexed_stm ;Store the byte in RAM
0316 02F6 0C 0F ld_valid09_lo: ANDIM 0FH ;Mask off high bits
0317 02F8 00 12 08 ADD byte ;Now full byte assembled
0318 02FB 18 00 OUT 00H ;Display on LEDs
0319 02FD 13 1B 08 JMP ld_indexed_stm ;Store the byte in RAM
0320 0300 11 1C 08 ld_stm_back: LDM ld_indexed_stm+1 ;Increment byte pointer, lo byte first
0321 0303 19 INC
0322 0304 12 1C 08 STM ld_indexed_stm+1
0323 0307 11 1D 08 LDM ld_indexed_stm+2 ;Increment hi byte if a carry occurred when lo byte
incremented
0324 030A 09 00 ADCIM 00H
0325 030C 12 1D 08 STM ld_indexed_stm+2
0326 030F 13 1D 02 JMP ld_get_hi
0327 0312 ld_done:
0328 0312 13 98 00 ld_error: JMP sm_warm ;Return to monitor
0329 0315
0330 0315 ;Monitor routine for binary load
0331 0315 ;Gets load target address and number of bytes from terminal
0332 0315 ;Loads bytes in RAM and returns to monitor
0333 0315 13 E2 04 sm_bload jmp get_address
0334 0318 11 0E 08 bl_addr_back ldm address
0335 031B 12 2E 08 stm bl_indexed_stm+1
0336 031E 11 0F 08 ldm address+1
0337 0321 12 2F 08 stm bl_indexed_stm+2
0338 0324
0339 0324 ;Gets number of bytes in decimal from input using get_line, called as level 0 subroutine
0340 0324 ;Write newline
0341 0324 11 B5 07 bl_get_bytes ldm bytes_str
0342 0327 12 34 08 stm ws_inst+1
0343 032A 11 B6 07 ldm bytes_str+1
0344 032D 12 35 08 stm ws_inst+2
0345 0330 call0(write_string)
0345 0330
0345 0330 11 3F 03
0345 0333 12 40 08

141

0345 0336 11 40 03
0345 0339 12 41 08
0345 033C 13 E7 05
0345 033F 41 03
0346 0341
0347 0341 ;Get input decimal number string
0348 0341 call0(get_line)
0348 0341
0348 0341 11 50 03
0348 0344 12 40 08
0348 0347 11 51 03
0348 034A 12 41 08
0348 034D 13 8D 05
0348 0350 52 03
0349 0352
0350 0352 ;Get word value from input string
0351 0352 ;No error checking for final value -- must be between 0 and 65535 (0000 and FFFF hex)
0352 0352 ;No error checking for numerals -- must be 0 to 9
0353 0352
0354 0352 10 00 ldi 0 ;starting value
0355 0354 12 00 08 stm dp_value ;zero final value variable
0356 0357 12 01 08 stm dp_value+1
0357 035A 11 07 08 dp_input ldm gl_str_len ;input string length from get_line
0358 035D 0F 05 cmp 5
0359 035F 16 79 03 jpc dp_setup_5
0360 0362 0F 04 cmp 4
0361 0364 16 9A 03 jpc dp_setup_4
0362 0367 0F 03 cmp 3
0363 0369 16 B5 03 jpc dp_setup_3
0364 036C 0F 02 cmp 2
0365 036E 16 CA 03 jpc dp_setup_2
0366 0371 0F 01 cmp 1
0367 0373 16 D9 03 jpc dp_setup_1
0368 0376 13 98 00 jmp sm_warm
0369 0379
0370 0379 11 84 08 dp_setup_5 ldm buffer+4
0371 037C 12 06 08 stm dp_1s
0372 037F 11 83 08 ldm buffer+3
0373 0382 12 05 08 stm dp_10s
0374 0385 11 82 08 ldm buffer+2

142

0375 0388 12 04 08 stm dp_100s
0376 038B 11 81 08 ldm buffer+1
0377 038E 12 03 08 stm dp_1000s
0378 0391 11 80 08 ldm buffer
0379 0394 12 02 08 stm dp_10000s
0380 0397 13 E2 03 jmp dp_10000_mult
0381 039A 11 83 08 dp_setup_4 ldm buffer+3
0382 039D 12 06 08 stm dp_1s
0383 03A0 11 82 08 ldm buffer+2
0384 03A3 12 05 08 stm dp_10s
0385 03A6 11 81 08 ldm buffer+1
0386 03A9 12 04 08 stm dp_100s
0387 03AC 11 80 08 ldm buffer
0388 03AF 12 03 08 stm dp_1000s
0389 03B2 13 04 04 jmp dp_1000_mult
0390 03B5 11 82 08 dp_setup_3 ldm buffer+2
0391 03B8 12 06 08 stm dp_1s
0392 03BB 11 81 08 ldm buffer+1
0393 03BE 12 05 08 stm dp_10s
0394 03C1 11 80 08 ldm buffer
0395 03C4 12 04 08 stm dp_100s
0396 03C7 13 26 04 jmp dp_100_mult
0397 03CA 11 81 08 dp_setup_2 ldm buffer+1
0398 03CD 12 06 08 stm dp_1s
0399 03D0 11 80 08 ldm buffer
0400 03D3 12 05 08 stm dp_10s
0401 03D6 13 48 04 jmp dp_10_mult
0402 03D9 11 80 08 dp_setup_1 ldm buffer
0403 03DC 12 06 08 stm dp_1s
0404 03DF 13 6A 04 jmp dp_1_mult
0405 03E2
0406 03E2
0407 03E2
0408 03E2 ;decimal parser multiplication
0409 03E2 11 02 08 dp_10000_mult ldm dp_10000s
0410 03E5 0A 30 subim 30h ;ASCII for '0'
0411 03E7 14 04 04 jpz dp_10000_done
0412 03EA 10 10 ldi 10h ;hex low byte of 10,000 decimal
0413 03EC 00 00 08 addm dp_value
0414 03EF 12 00 08 stm dp_value

143

0415 03F2 10 27 ldi 27h ;hex high byte of 10,000 decimal
0416 03F4 01 01 08 adcm dp_value+1
0417 03F7 12 01 08 stm dp_value+1
0418 03FA 11 02 08 ldm dp_10000s
0419 03FD 1A dec
0420 03FE 12 02 08 stm dp_10000s
0421 0401 13 E2 03 jmp dp_10000_mult
0422 0404 dp_10000_done
0423 0404 11 03 08 dp_1000_mult ldm dp_1000s
0424 0407 0A 30 subim 30h ;ASCII for '0'
0425 0409 14 26 04 jpz dp_1000_done
0426 040C 10 E8 ldi 0e8h ;hex low byte of 1000 decimal
0427 040E 00 00 08 addm dp_value
0428 0411 12 00 08 stm dp_value
0429 0414 10 03 ldi 03h ;hex high byte of 1000 decimal
0430 0416 01 01 08 adcm dp_value+1
0431 0419 12 01 08 stm dp_value+1
0432 041C 11 03 08 ldm dp_1000s
0433 041F 1A dec
0434 0420 12 03 08 stm dp_1000s
0435 0423 13 04 04 jmp dp_1000_mult
0436 0426 dp_1000_done
0437 0426 11 04 08 dp_100_mult ldm dp_100s
0438 0429 0A 30 subim 30h ;ASCII for '0'
0439 042B 14 48 04 jpz dp_100_done
0440 042E 10 64 ldi 64h ;hex low byte of 100 decimal
0441 0430 00 00 08 addm dp_value
0442 0433 12 00 08 stm dp_value
0443 0436 10 00 ldi 00h ;hex high byte of 100 decimal
0444 0438 01 01 08 adcm dp_value+1
0445 043B 12 01 08 stm dp_value+1
0446 043E 11 04 08 ldm dp_100s
0447 0441 1A dec
0448 0442 12 04 08 stm dp_100s
0449 0445 13 26 04 jmp dp_100_mult
0450 0448 dp_100_done
0451 0448 11 05 08 dp_10_mult ldm dp_10s
0452 044B 0A 30 subim 30h ;ASCII for '0'
0453 044D 14 6A 04 jpz dp_10_done
0454 0450 10 0A ldi 0ah ;hex low byte of 10 decimal

144

0455 0452 00 00 08 addm dp_value
0456 0455 12 00 08 stm dp_value
0457 0458 10 00 ldi 00h ;hex high byte of 10 decimal
0458 045A 01 01 08 adcm dp_value+1
0459 045D 12 01 08 stm dp_value+1
0460 0460 11 05 08 ldm dp_10s
0461 0463 1A dec
0462 0464 12 05 08 stm dp_10s
0463 0467 13 48 04 jmp dp_10_mult
0464 046A dp_10_done
0465 046A 11 06 08 dp_1_mult ldm dp_1s
0466 046D 0A 30 subim 30h ;ASCII for '0'
0467 046F 00 00 08 addm dp_value
0468 0472 12 00 08 stm dp_value
0469 0475 10 00 ldi 00h ;hex high byte of 100 decimal
0470 0477 01 01 08 adcm dp_value+1
0471 047A 12 01 08 stm dp_value+1
0472 047D
0473 047D ;Set up byte counter and write ready string
0474 047D 11 00 08 ldm dp_value
0475 0480 12 08 08 stm bl_byte_counter
0476 0483 11 01 08 ldm dp_value+1
0477 0486 12 09 08 stm bl_byte_counter+1
0478 0489 11 CF 07 ldm bl_ready_str
0479 048C 12 34 08 stm ws_inst+1
0480 048F 11 D0 07 ldm bl_ready_str+1
0481 0492 12 35 08 stm ws_inst+2
0482 0495 call0(write_string)
0482 0495
0482 0495 11 A4 04
0482 0498 12 40 08
0482 049B 11 A5 04
0482 049E 12 41 08
0482 04A1 13 E7 05
0482 04A4 A6 04
0483 04A6
0484 04A6 ;Loop to get binary data and store
0485 04A6 17 03 bl_chk_loop: in 03h ;get status
0486 04A8 0C 02 andim 02h ;check RxRDY
0487 04AA 14 A6 04 jpz bl_chk_loop

145

0488 04AD 17 02 in 02h ;get binary from port
0489 04AF 13 2D 08 jmp bl_indexed_stm ;store in RAM
0490 04B2 11 2E 08 bl_back ldm bl_indexed_stm+1;increment pointer
0491 04B5 19 inc
0492 04B6 12 2E 08 stm bl_indexed_stm+1
0493 04B9 11 2F 08 ldm bl_indexed_stm+2
0494 04BC 09 00 adcim 0
0495 04BE 12 2F 08 stm bl_indexed_stm+2
0496 04C1 11 08 08 ldm bl_byte_counter ;decrement byte counter
0497 04C4 1A dec
0498 04C5 12 08 08 stm bl_byte_counter
0499 04C8 11 09 08 ldm bl_byte_counter+1
0500 04CB 0B 00 sbbim 0
0501 04CD 12 09 08 stm bl_byte_counter+1
0502 04D0 14 D6 04 jpz bl_low_zero ;check if byte counter = zero
0503 04D3 13 A6 04 jmp bl_chk_loop
0504 04D6 11 08 08 bl_low_zero ldm bl_byte_counter
0505 04D9 14 DF 04 jpz bl_done ;yes, done -- return to monitor
0506 04DC 13 A6 04 jmp bl_chk_loop ;no, get next byte
0507 04DF 13 98 00 bl_done jmp sm_warm
0508 04E2
0509 04E2
0510 04E2
0511 04E2 ;Routine to get address
0512 04E2 ;Not called as a subroutine, return jump by switch structure
0513 04E2 11 A1 07 get_address ldm addr_str
0514 04E5 12 34 08 stm ws_inst+1
0515 04E8 11 A2 07 ldm addr_str+1
0516 04EB 12 35 08 stm ws_inst+2
0517 04EE call0(write_string)
0517 04EE
0517 04EE 11 FD 04
0517 04F1 12 40 08
0517 04F4 11 FE 04
0517 04F7 12 41 08
0517 04FA 13 E7 05
0517 04FD FF 04
0518 04FF
0519 04FF ;Get hex input string for address
0520 04FF call0(get_line)

146

0520 04FF
0520 04FF 11 0E 05
0520 0502 12 40 08
0520 0505 11 0F 05
0520 0508 12 41 08
0520 050B 13 8D 05
0520 050E 10 05
0521 0510
0522 0510 ;Write newline
0523 0510 11 31 07 ldm new_line
0524 0513 12 34 08 stm ws_inst+1
0525 0516 11 32 07 ldm new_line+1
0526 0519 12 35 08 stm ws_inst+2
0527 051C call0(write_string)
0527 051C
0527 051C 11 2B 05
0527 051F 12 40 08
0527 0522 11 2C 05
0527 0525 12 41 08
0527 0528 13 E7 05
0527 052B 2D 05
0528 052D
0529 052D ;No error checking for length of string -- must be exactly 4 hex characters
0530 052D ;Memory address stored in address variable
0531 052D 11 80 08 ldm buffer ;first character
0532 0530 12 0A 08 stm char_pair
0533 0533 11 81 08 ldm buffer+1 ;second character
0534 0536 12 0B 08 stm char_pair+1
0535 0539 call1(hex_pair_to_byte)
0535 0539
0535 0539 11 48 05
0535 053C 12 43 08
0535 053F 11 49 05
0535 0542 12 44 08
0535 0545 13 54 06
0535 0548 4A 05
0536 054A 16 98 00 jpc sm_warm ;non-hex character detected, quit
0537 054D 12 0F 08 stm address+1 ;high byte of address
0538 0550 11 82 08 ldm buffer+2 ;third character
0539 0553 12 0A 08 stm char_pair

147

0540 0556 11 83 08 ldm buffer+3 ;fourth character
0541 0559 12 0B 08 stm char_pair+1
0542 055C call1(hex_pair_to_byte)
0542 055C
0542 055C 11 6B 05
0542 055F 12 43 08
0542 0562 11 6C 05
0542 0565 12 44 08
0542 0568 13 54 06
0542 056B 6D 05
0543 056D 16 98 00 jpc sm_warm ;non-hex character detected, quit
0544 0570 12 0E 08 stm address ;low byte of address
0545 0573 ;Switch for return jumps
0546 0573 11 11 08 ldm choice
0547 0576 0F 35 cmp '5'
0548 0578 16 18 03 jpc bl_addr_back
0549 057B 0F 34 cmp '4'
0550 057D 16 0C 02 jpc ld_addr_back
0551 0580 0F 33 cmp '3'
0552 0582 16 FA 01 jpc run_addr_back
0553 0585 0F 32 cmp '2'
0554 0587 16 E7 00 jpc d_addr_back
0555 058A 13 98 00 jmp sm_warm
0556 058D
0557 058D ;Get_line subroutine, call as level 0
0558 058D ;Gets a line from input, puts zero-terminated string in buffer
0559 058D ;Echos characters to screen, except terminating carriage return
0560 058D ;Address of buffer in buff_low and buff_high constants
0561 058D ;Uses RAM variable address instruction gl_indexed_stm
0562 058D ;length of input string returned in gl_str_len
0563 058D ;Returns when carriage return entered
0564 058D
0565 058D 10 00 get_line: ldi 0
0566 058F 12 07 08 stm gl_str_len ;string length
0567 0592 10 80 ldi buff_low ;low byte of buffer address
0568 0594 12 3A 08 stm gl_indexed_stm+1
0569 0597 10 08 ldi buff_high ;high byte of buffer address
0570 0599 12 3B 08 stm gl_indexed_stm+2
0571 059C 17 03 gl_chk_loop: in 03h ;get status
0572 059E 0C 02 andim 02h ;check RxRDY

148

0573 05A0 14 9C 05 jpz gl_chk_loop
0574 05A3 17 02 in 02h ;get char from port
0575 05A5 12 10 08 stm temp ;save character
0576 05A8 0A 0D subim 0dh ;is it a return character?
0577 05AA 14 BA 05 jpz gl_end_of_line ;yes, replace with a zero
0578 05AD 11 07 08 ldm gl_str_len ;no, increment string length
0579 05B0 19 inc
0580 05B1 12 07 08 stm gl_str_len
0581 05B4 11 10 08 ldm temp ;get back char
0582 05B7 13 BD 05 jmp gl_store_it ;place character in buffer
0583 05BA 12 10 08 gl_end_of_line: stm temp ;place zero in temp
0584 05BD 13 39 08 gl_store_it: jmp gl_indexed_stm ;store character in buffer
0585 05C0 11 10 08 gl_back: ldm temp ;check if end-of-line (temp = 0)
0586 05C3 14 E4 05 jpz gl_done ;yes, quit
0587 05C6 17 03 gl_out_loop: in 03h ;no, send char to screen
0588 05C8 0C 01 andim 01h ;check TxRDY
0589 05CA 14 C6 05 jpz gl_out_loop ;loop if not ready
0590 05CD 11 10 08 ldm temp
0591 05D0 18 02 out 02h ;output character to port
0592 05D2 11 3A 08 ldm gl_indexed_stm+1 ;increment indexing pointer
0593 05D5 19 inc
0594 05D6 12 3A 08 stm gl_indexed_stm+1
0595 05D9 11 3B 08 ldm gl_indexed_stm+2
0596 05DC 09 00 adcim 00h ;16-bit addition
0597 05DE 12 3B 08 stm gl_indexed_stm+2
0598 05E1 13 9C 05 jmp gl_chk_loop
0599 05E4 gl_done: ret0
0599 05E4 13 3F 08
0600 05E7
0601 05E7 ;Write_string subroutine, call as level 0
0602 05E7 ;Writes a zero-terminated string to screen at current cursor location
0603 05E7 ;Must set up address of string to be written in ws_inst+1 and ws_inst+2
0604 05E7 write_string:
0605 05E7 17 03 ws_chk_loop: in 03h ;get status
0606 05E9 0C 01 andim 01h ;check TxRDY
0607 05EB 14 E7 05 jpz ws_chk_loop
0608 05EE 13 33 08 jmp ws_inst ;get a character when port ready
0609 05F1 14 08 06 ws_back: jpz ws_done ;quit if end-of-string
0610 05F4 18 02 out 02h ;output character to port
0611 05F6 11 34 08 ldm ws_inst+1 ;indexing pointer

149

0612 05F9 19 inc
0613 05FA 12 34 08 stm ws_inst+1
0614 05FD 11 35 08 ldm ws_inst+2
0615 0600 09 00 adcim 00h ;16-bit addition
0616 0602 12 35 08 stm ws_inst+2
0617 0605 13 E7 05 jmp ws_chk_loop
0618 0608 ws_done: ret0
0618 0608 13 3F 08
0619 060B
0620 060B ;Subroutine hex_to word -- call as level 0
0621 060B ;Calls hex_pair_to_byte as level 1
0622 060B ;Get 16-bit word value from input string in buffer
0623 060B ;No error checking for length of string -- must be exactly 4 hex characters
0624 060B ;16-bit value placed in h2w_value
0625 060B 11 80 08 hex_to_word: ldm buffer ;first character
0626 060E 12 0A 08 stm char_pair
0627 0611 11 81 08 ldm buffer+1 ;second character
0628 0614 12 0B 08 stm char_pair+1
0629 0617 call1(hex_pair_to_byte) ;high-order byte
0629 0617
0629 0617 11 26 06
0629 061A 12 43 08
0629 061D 11 27 06
0629 0620 12 44 08
0629 0623 13 54 06
0629 0626 28 06
0630 0628 16 51 06 jpc h2w_done ;non-hex character detected, exit with carry set
0631 062B 12 0D 08 stm h2w_value+1 ;high byte of address
0632 062E 11 82 08 ldm buffer+2 ;third character
0633 0631 12 0A 08 stm char_pair
0634 0634 11 83 08 ldm buffer+3 ;fourth character
0635 0637 12 0B 08 stm char_pair+1
0636 063A call1(hex_pair_to_byte) ;low-order byte
0636 063A
0636 063A 11 49 06
0636 063D 12 43 08
0636 0640 11 4A 06
0636 0643 12 44 08
0636 0646 13 54 06
0636 0649 4B 06

150

0637 064B 16 51 06 jpc h2w_done ;exit with carry set if error
0638 064E 12 0C 08 stm h2w_value ;low byte of address
0639 0651 h2w_done ret0
0639 0651 13 3F 08
0640 0654
0641 0654 ;Subroutine to convert hex character pair to byte, call as level 1
0642 0654 ;Character pair in memory location char_pair, stored hi-low
0643 0654 ;Returns with byte in accumulator and carry flag clear if no error
0644 0654 ;Returns with character in accumulator and carry flag set if error
0645 0654 ;Calls char_to_nybble as level 2 subroutine
0646 0654 11 0A 08 hex_pair_to_byte: ldm char_pair ;high order character of pair
0647 0657 12 10 08 stm temp ;char_to_nybble needs char in TEMP
0648 065A call2(char_to_nybble)
0648 065A
0648 065A 11 69 06
0648 065D 12 46 08
0648 0660 11 6A 06
0648 0663 12 47 08
0648 0666 13 FF 06
0648 0669 6B 06
0649 066B 16 B0 06 jpc c2n_error
0650 066E 12 12 08 STM byte ;Will eventually contain the byte to load
0651 0671 12 10 08 STM temp ;Value to add
0652 0674 10 10 LDI 10H ;Multiply x 16 to shift into high-order nybble
0653 0676 12 13 08 STM counter
0654 0679 11 13 08 MULTLOOP: LDM counter
0655 067C 1A DEC
0656 067D 14 8F 06 JPZ GET_LO ;Have added 16 times, done
0657 0680 12 13 08 STM counter
0658 0683 11 10 08 LDM temp ;Original nybble
0659 0686 00 12 08 ADD byte ;Add to BYTE and store
0660 0689 12 12 08 STM byte
0661 068C 13 79 06 JMP MULTLOOP ;Keep adding
0662 068F 11 0B 08 GET_LO: ldm char_pair+1
0663 0692 12 10 08 stm temp
0664 0695 call2(char_to_nybble)
0664 0695
0664 0695 11 A4 06
0664 0698 12 46 08
0664 069B 11 A5 06

151

0664 069E 12 47 08
0664 06A1 13 FF 06
0664 06A4 A6 06
0665 06A6 16 B0 06 jpc c2n_error
0666 06A9 00 12 08 ADD byte ;Combine with hi nybble stored in BYTE
0667 06AC 1C ccf ;in case addition changed it
0668 06AD 13 B1 06 JMP c2b_done ;Done, no error
0669 06B0 1B c2n_error: scf
0670 06B1 c2b_done: ret1
0670 06B1 13 42 08
0671 06B4
0672 06B4 ;Subroutine to convert byte to hex character pair, call as level 0
0673 06B4 ;Gets byte from byte variable
0674 06B4 ;Returns with character pair in memory location char_pair, stored hi-low
0675 06B4 ;
0676 06B4 byte_to_hex_pair:
0677 06B4 11 12 08 ldm byte
0678 06B7 0C F0 andim 0f0h ;dealing with high nybble
0679 06B9 12 10 08 stm temp
0680 06BC 10 00 ldi 00h ;prepare to shift down (divide by 16)
0681 06BE 12 13 08 stm counter
0682 06C1 11 10 08 b2h_divide: ldm temp
0683 06C4 0A 10 subim 16
0684 06C6 16 D6 06 jpc b2h_cont ;continue if nybble >=0
0685 06C9 11 13 08 ldm counter ;hi-nybble now in low position
0686 06CC 0F 0A cmp 10 ;is value <10?
0687 06CE 16 E3 06 jpc b2h_hi_A2F ;yes, jump and convert to char
0688 06D1 08 30 addim 30h ;no, convert to char
0689 06D3 13 E5 06 jmp b2h_store_hi
0690 06D6 12 10 08 b2h_cont: stm temp
0691 06D9 11 13 08 ldm counter
0692 06DC 19 inc
0693 06DD 12 13 08 stm counter
0694 06E0 13 C1 06 jmp b2h_divide
0695 06E3 08 37 b2h_hi_A2F: addim 37h
0696 06E5 12 0A 08 b2h_store_hi: stm char_pair ;hi-order hex char
0697 06E8 11 12 08 ldm byte
0698 06EB 0C 0F andim 0fh ;dealing with low-order nybble
0699 06ED 0F 0A cmp 10 ;is value <10?
0700 06EF 16 F7 06 jpc b2h_lo_A2F ;yes, jump and convert to char

152

0701 06F2 08 30 addim 30h ;no, convert to char
0702 06F4 13 F9 06 jmp b2h_store_lo
0703 06F7 08 37 b2h_lo_A2F: addim 37h
0704 06F9 12 0B 08 b2h_store_lo: stm char_pair+1 ;now char pair is in variable
0705 06FC ret0
0705 06FC 13 3F 08
0706 06FF
0707 06FF
0708 06FF ;Subroutine to convert hex char to nybble, call as level 2
0709 06FF ;Checks for validity of char, 0-9 and A-F (upper case only)
0710 06FF ;Carry flag set on exit if error
0711 06FF ;Carry flag clear if character valid
0712 06FF ;Call with char in temp
0713 06FF ;Exits with nybble in lower half of accumulator if no error
0714 06FF ;Original character in accumulator if error
0715 06FF
0716 06FF 11 10 08 char_to_nybble: ldm temp ;Get character
0717 0702 0F 30 cmp 30H ;Lower limit of hex characters
0718 0704 16 0A 07 jpc c2n_next ;Char >= 30H, possibly valid
0719 0707 13 2A 07 jmp invalid ;Char < 30H, invalid hex char
0720 070A 0F 47 c2n_next: cmp 47h ;ASCII for "G"
0721 070C 16 2A 07 jpc invalid ;Char is G or greater, invalid
0722 070F 0F 41 cmp 41h ;ASCII for "A"
0723 0711 16 1C 07 jpc validAF ;Char is valid A-F
0724 0714 0F 3A cmp 3Ah ;ASCII for ":"
0725 0716 16 2A 07 jpc invalid ;Char is ":" or greater, but < "A", invalid
0726 0719 13 24 07 jmp valid09 ;Char is valid 0-9
0727 071C 0C 0F validAF: andim 0fh ;Mask off high bits
0728 071E 08 09 addim 9 ;Adjust ASCII to binary value
0729 0720 1C ccf ;exit no error
0730 0721 ret2
0730 0721 13 45 08
0731 0724 0C 0F valid09: andim 0fh ;Mask off high bits
0732 0726 1C ccf ;exit no error
0733 0727 ret2
0733 0727 13 45 08
0734 072A 11 10 08 invalid: ldm temp ;put char in accumulator
0735 072D 1B scf ;Set carry flag
0736 072E ret2
0736 072E 13 45 08

153

0737 0731 ;String constants
0738 0731 33 07 new_line .dw $+2
0739 0733 0D 0A 00 .db 0dh,0ah,0
0740 0736 38 07 sm_greeting: .dw $+2
0741 0738 0D 0A .db 0dh,0ah
0742 073A 43505576696C .text "CPUville 8-bit processor system monitor v.1"
0742 0740 6C6520382D6269742070726F636573736F722073797374656D206D6F6E69746F7220762E31
0743 0765 0D 0A 00 .db 0dh,0ah,0
0744 0768 6A 07 sm_prompt .dw $+2
0745 076A 0D 0A .db 0dh,0ah
0746 076C 456E74657220 .text "Enter number: 1=restart 2=dump 3=run 4=load 5=bload "
0746 0772 6E756D6265723A20313D7265737461727420323D64756D7020333D72756E20343D6C6F616420353D626C6F616420
0747 07A0 00 .db 0
0748 07A1 A3 07 addr_str .dw $+2
0749 07A3 0D 0A .db 0dh,0ah
0750 07A5 416464726573 .text Address (hex):
0750 07AB 732028686578293A20
0751 07B4 00 .db 0
0752 07B5 B7 07 bytes_str .dw $+2
0753 07B7 0D 0A .db 0dh,0ah
0754 07B9 427974657320 .text Bytes to load (dec):
0754 07BF 746F206C6F61642028646563293A20
0755 07CE 00 .db 0
0756 07CF D1 07 bl_ready_str .dw $+2
0757 07D1 0D 0A .db 0dh,0ah
0758 07D3 52656164792C .text Ready, start transfer
0758 07D9 207374617274207472616E73666572
0759 07E8 0D 0A 00 .db 0dh,0ah,0
0760 07EB
0761 07EB ;The following section contains labels for RAM variables and other structures
0762 0800 .org 0800h ;Start of RAM
0763 0800 ;RAM Variables
0764 0800 00 00 dp_value .dw 0000h
0765 0802 00 dp_10000s .db 00h
0766 0803 00 dp_1000s .db 00h
0767 0804 00 dp_100s .db 00h
0768 0805 00 dp_10s .db 00h
0769 0806 00 dp_1s .db 00h
0770 0807 00 gl_str_len .db 00h
0771 0808 00 00 bl_byte_counter .dw 0000h

154

0772 080A 00 00 char_pair .dw 0000h
0773 080C 00 00 h2w_value .dw 0000h
0774 080E 00 00 address .dw 0000h
0775 0810 00 temp .db 00h
0776 0811 00 choice .db 00h
0777 0812 00 byte .db 00h
0778 0813 00 counter .db 00h
0779 0814 00 line_counter .db 00h
0780 0815 00 char_count .db 00h
0781 0816 00 byte_counter .db 00h
0782 0817 00 nybble_counter .db 00h
0783 0818
0784 0818 ;RAM instructions with variable address (must initialize opcode when monitor is in ROM)
0785 0818 ;Jump instruction for run routine, must be in RAM
0786 0818 13 00 00 run_jump jmp 0000h
0787 081B ;Indexed load for load routine, must be in RAM
0788 081B 12 00 00 ld_indexed_stm stm 0000h
0789 081E 13 00 03 jmp ld_stm_back
0790 0821 ;Indexed load and store instructions for dump, must be in RAM
0791 0821 11 00 00 d_indexed_ldm ldm 0000h
0792 0824 13 59 01 jmp d_ldm_back
0793 0827 12 00 00 d_indexed_stm stm 0000h
0794 082A 13 78 01 jmp d_stm_back
0795 082D ;Indexed store instruction for binary loader, must be in RAM
0796 082D 12 00 00 bl_indexed_stm: stm 0000h
0797 0830 13 B2 04 jmp bl_back
0798 0833 ;Indexed load instruction for write_string, must be in RAM
0799 0833 11 00 00 ws_inst: ldm 0000h
0800 0836 13 F1 05 jmp ws_back
0801 0839 ;Indexed store instruction for get_line, must be in RAM
0802 0839 12 00 00 gl_indexed_stm: stm 0000h
0803 083C 13 C0 05 jmp gl_back
0804 083F ;Return instruction for level 0 call macros, must be in RAM
0805 083F 13 00 00 return_jump0: jmp 0000h
0806 0842 ;Return instruction for level 1 call macros, must be in RAM
0807 0842 13 00 00 return_jump1: jmp 0000h
0808 0845 ;Return instruction for level 2 call macros, must be in RAM
0809 0845 13 00 00 return_jump2: jmp 0000h
0810 0848
0811 0848 return: .set 0000h ;assembler needs variable label set back to original value

155

0812 0848 .end
0813 0848
0814 0848
0815 0848
0816 0848
0817 0848
0818 0848
0819 0848
tasm: Number of errors = 0

156

	Introduction
	Building Tips
	Building the ALU
	Building the Main Board
	Building the Control Board
	Assembling the 8-bit Processor
	Control Board Switches
	Using the 8-bit Processor with a 4K System
	Using the 8-bit Processor with a 64K System
	Monitor commands
	1=restart
	2=dump
	3=run
	4=load
	5=bload

	Connecting a disk drive

	Introduction to Programming for the 8-bit Processor
	The Instruction Set
	ADC – add with carry
	ADCIM – add with carry, immediate
	ADD – add memory data to the accumulator
	ADDIM – add immediate data to the accumulator
	AND – bitwise logical AND of memory data with the accumulator
	ANDIM – bitwise logical AND of immediate data with the accumulator
	CCF – clear carry flag
	CMP – compare
	DEC – decrement accumulator
	IN – load accumulator with data from an input port
	INC – increment accumulator
	JMP – jump unconditional
	JPC – jump if carry
	JPM – jump if minus
	JPZ – jump if zero
	LDI – load accumulator immediate
	LDM – load accumulator from memory
	NOP – no operation
	NOT – bitwise invert (ones-complement) accumulator
	OR – bitwise logical OR of memory data with accumulator
	ORIM – bitwise logical OR of immediate data with accumulator
	OUT – load output port with accumulator
	SBB – subtract memory and borrow from accumulator
	SBBIM – subtract immediate data and borrow from accumulator
	SCF – set carry flag
	STM – store accumulator to memory
	SUB – subtract memory from accumulator
	SUBIM – subtract immediate data from accumulator
	XOR – bitwise exclusive OR of memory with accumulator
	XORIM – bitwise exclusive-OR of immediate data with accumulator

	Using TASM
	Schematics and Explanations
	Overall design of the processor data path
	Main board (data path) schematics
	Display connector
	Program counter
	Zero flag logic
	Address source multiplexer
	Instruction register
	Data-out buffer
	Control connector
	ALU op source multiplexer, carry flip-flop, and ALU connector
	Accumulator source multiplexer and accumulator
	ALU B source multiplexer
	System connector

	ALU schematics
	ALU connector
	Carry-out logic
	ALU logic
	B inverter and multiplexer
	Carry-in multiplexer
	Borrow multiplexer
	Adder
	Borrow adder
	AND
	OR
	XOR
	NOT
	ALU output multiplexer

	Control board schematic
	State register
	Next-state logic
	Front panel connector
	State decoder
	Control connector
	Control logic (portion)
	Clocks and reset
	Clock delay
	Write signal machine
	Register write pulse machine

	Appendix
	ALU parts organizer
	ALU parts list
	Main board parts organizer
	Main board parts list
	Control board parts organizer
	Control board parts list
	ALU carry-out logic explanation
	ALU logic explanation
	Next-state logic explanation
	Control signals logic explanation
	System write signal timing
	Register write pulse timing
	Special Programming Techniques
	Indexing
	Subroutines

	Instruction set table, sorted by opcode
	Instruction set table, sorted by mnemonic

	Selected Program Listings
	ROM for 4K systems
	adder
	ROM System Monitor

